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Chapter 1

Introduction

Recall that if A is a quantum observable, then the spectrum of A consists
of the possible values λ2 that the observable can take when a state ψ is
measured. Moreover, ψ is a pure state for measurement λ2 (i.e. an observer
is guaranteed to measure ψ in state λ2) if and only if ψ solves the eigenvalue
equation Aψ = λ2ψ. In other words, the pure states for λ2 are exactly the
kernel of the operator A− λ2.

The stationary (homogeneous) Schrödinger equation is the eigenvalue
equation when A is the Hamiltonian

HV = D2 + V

where D = −i∂ and V ∈ L∞(R→ R) is a potential. (Here we can view D2

as the Laplacian −∆, or as the momentum operator.)
Suppose that we are working in one-dimensional space. If suppV is com-

pact, then a solution ψ of the stationary Schrödinger equation with energy
λ2 has the form

ψ(x) =

{
A+e

iλx +B−e
−iλx, x� 0,

A−e
iλx +B+e

−iλx, x� 0,
(1.1)

as we discuss after the proof of Theorem 3.8. The physical interpretation
of (1.1) is that since ψ is a pure state, it only has one frequency λ1, and
if V = 0, it must be a superposition of an incoming and an outgoing wave
of frequency λ. Moreover, since V is bounded, the wave ψ can “tunnel”

1This is our reason for writing the eigenvalue as λ2.
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through the imperfect barrier V ; thus the amplitudes A+, B− should affect
the amplitudes A−, B+. This phenomenon is known as “scattering”, and it
can be mathematically described by a linear operator known as the scattering
matrix (c.f. Definition 3.19) S(λ), which satisfies the equation

S(λ)

[
A−
B−

]
=

[
A+

B+

]
.

The function S is meromorphic.
Another meromorphic function of significance is the resolvent RV , which

tells us how to solve the inhomogeneous stationary Schrödinger equation: it
returns an operator L2

comp(R)→ L2
loc(R) satisfying the equation

(HV − λ2)RV (λ)f = f.

The poles λ of RV are the square roots of isolated points of the spectrum
of HV . Such poles are known as “scattering resonances” (c.f. Definition
3.21), and they have finite multiplicity. We let ResV be the set of nonzero
resonances of V and let mR(λ) denote the multiplicity of a resonance λ. This
satisfies the equation

mR(−λ0)−mR(λ0) =
1

2πi
tr

∮
Γλ0

S ′(λ)S(λ)∗ dλ

where Γλ0 is a sufficiently small contour containing λ0. So one is naturally
interested in the trace of the log-derivative of S, trS ′S∗. In fact, the Breit-
Wigner approximation relates trS ′S∗ to a sum over resonances:

Theorem 1.1. Suppose that V is compactly supported and λ0 ∈ R. Then
the series

−∞ <
∑

λ∈ResV \0

Imλ

|λ− λ0|2
<∞ (1.2)

is absolutely convergent, and we have

1

2πi
trS ′(λ0)S(λ0)∗ = − 1

π
| ch suppV | − 1

2π

∑
λ∈ResV \0

Imλ

|λ− λ0|2
. (1.3)

Here ch suppV is the convex hull of suppV 2 and | ch suppV | is its length.
Our first goal is to review the proof of the Breit-Wigner approximation out-
lined by Dyatlov and Zworski in their book [1]; c.f. Theorem 3.24.

2In plain English, this means that ch suppV is the intersection of all compact intervals
[α, β], such that there is a x ∈ [α, β] such that V (x) 6= 0.
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Our main goal is to consider when the Breit-Wigner approximation can
be reasonably generalized to non-compactly supported potentials satisfying
the following condition:

Definition 1.2. A function V ∈ L∞(R) is said to be super-exponentially
decreasing if for every N ∈ N we can find a CN > 0 such that

V (x) ≤ CNe
−N |x|.

For example, a Gaussian is super-exponentially decreasing. We will indi-
cate that a function V is super-exponentially decreasing by writing V (x) =
O(e−|x|∞). One can define resonances using the Fourier-Laplace transform,
which will exist for a super-exponential decreasing potential; so it is reason-
able to demand this hypothesis.

Definition 1.3. The Breit-Wigner series for V is defined by

B(V ) = −
∑

λ∈ResV \0

Imλ

|λ|2
.

We will always assume 0 /∈ ResV when referring to B(V ), even if we do
not explicitly note this. Since ResV is a discrete set, this will give a δ > 0
such that every λ ∈ ResV has |λ| > δ, avoiding a trivial form of divergence.

By (1.2), B(V ) converges if V is compactly supported. It is natural, then,
to ask whether the Breit-Wigner approximation still holds when V is not
compactly supported. It is not obvious that the definition of the scattering
matrix S makes sense in this case, but in fact, one can generalize the definition
appropriately; see the remarks after Lemma 3.2 in [4]. Under appropriate
assumptions trS ′S∗ remains meromorphic, yet | ch suppV | is now infinite,
since V is not compactly supported. Therefore, for (1.3) to remain formally
valid, (1.2) must fail, and hence B(V ) =∞.

Conjecture 1.4. Let V (x) = O(e−|x|∞). The Breit-Wigner series B(V )
converges if and only if V is compactly supported.

This conjecture is really a statement about the distribution of the discrete
set ResV . “Most” of the points of ResV lie in the lower-half plane C−, and
the Breit-Wigner series will converge just in case the resonances have small
imaginary part or large real part.
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1.1 The main conjecture

The distribution of ResV is in general quite difficult to study. However,
Froese made a conjecture [4, Conjecture 1.2] which gives one control over the
distribution of ResV , and proved that a large class of potentials including
Gaussians satisfy this conjecture.

To state Froese’s conjecture, recall that if V (x) = O(e−|x|∞), then its
Fourier transform V̂ is an entire function. By definition, the order ρ of V̂ is

ρ = lim sup
r→∞

supθ log log |V̂ (reiθ)|
log r

. (1.4)

We say that V̂ is of normal type provided that

0 < lim sup
r→∞

supθ log |V̂ (reiθ)|
rρ

<∞.

We say that V̂ is of completely regular growth provided that V̂ is of normal
type and that on a set A ⊆ (0,∞) of density 1 in (0,∞), the lim sup in the
definition of normal type is actually a uniform limit.

Under these hypotheses, Froese’s conjecture gives us a great deal of con-
trol over the distribution of ResV :

Conjecture 1.5 (Froese). Suppose that V (x) = O(e−|x|∞) and V̂ is of com-
pletely regular growth. Then in the lower-half plane C−, the distribution of
ResV is identical to the distribution of the zeroes of

F (z) = V̂ (2z)V̂ (−2z) + 1. (1.5)

We thus retreat to a weaker form of Conjecture 1.4, that, given Froese’s
conjecture, is somewhat more plausible.

Conjecture 1.6. Suppose that V (x) = O(e−|x|∞), V is not compactly sup-
ported and V̂ is of completely regular growth. Then either B(V ) diverges, or
V is a counterexample to Froese’s conjecture.

Aside from the heuristic evidence for Conjecture 1.6, we prove a special
case:
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Theorem 1.7. Suppose that V (x) = O(e−|x|∞), V is not compactly supported
and V̂ is of completely regular growth. Let F be given by (1.5) and ρ be given
by (1.4). Let

h(θ) = lim sup
r→∞

log |F (reiθ)|
rρ

.

For 0 ≤ θ < ϕ ≤ 2π, let

s(θ, ϕ) = h′(θ)− h′(ϕ) + ρ2

∫ ϕ

θ

h(ξ) dξ.

Suppose that one of the following is true:

1. There are θ < ϕ such that π /∈ (θ, ϕ) and s(θ, ϕ) 6= 0.

2. There are θ < ϕ such that π /∈ (θ, ϕ) and s(θ, ϕ) is not defined.

3. One has
lim
ϕ→π

s(π, ϕ) = 0.

Then either the Breit-Wigner series B(V ) diverges, or V is a counterexample
to Froese’s conjecture.

We restate and prove Theorem 1.7 as Theorem 4.4.

1.2 Some explicit examples

Let us first note that the assumption that V is super-exponentially decreasing
is not sharp. In fact, the Pöschl-Teller well, given by

V (x) = − 2

cosh2(x)
,

has a divergent Breit-Wigner series. In fact, it has resonances of the form
−i(n+ 2), n ∈ N [3], and so

B(V ) ≥
∞∑
n=0

n+ 2

|n+ 2|2
=
∞∑
n=2

n−1 =∞.

Such a potential is not super-exponentially decreasing.
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Let us check that the Breit-Wigner series of the Gaussian potential V (x) =
e−x

2
also diverges, without using Theorem 1.7. Doing so will illustrate some

of the techniques that we will use in the proof. First, up to an irrelevant
constant, we have V̂ (z) = e−z

2
. The function F given by (1.5) is therefore

F (z) = e−8z2 + 1. By Theorem 4.3, a result of Froese [4, Theorem 1.2], it
follows that the asymptotic distribution of resonances of V is identical to the
asymptotic distribution of solutions of the equation e−8z2 = −1 such that
Im z ≤ 0. Such solutions are of the form

z =

√
π(2n+ 1)

8
(−1)1/4

for n ∈ N and the value of (−1)1/4 chosen to be in the lower-half plane. Thus
we have

B(V ) ∼
√

8

π

∞∑
n=0

√
2(2n+ 1)

2n+ 1
=
√

2π
∞∑
n=0

1√
2n+ 1

which certainly diverges.
The constant

√
2 that appears in the summand

√
2(2n+ 1)(2n + 1)−1

arises from the fact that sin((−1)1/4) = 1/
√

2, but we just needed that it is
nonzero. This explains the added hypothesis in the statement of Theorem
1.7 that does not already appear in Conjecture 1.6. If one could show that a
non-compactly supported potential has “enough” resonances which are “far
from R”3, one could remove this hypothesis. For example, one may hope to
use complex scaling to remove this hypothesis if V is in fact holomorphic in
a neighborhood of R.

In addition, while we used the fact that the zeroes of F were distributed
at a square-root rate, we only needed them to be distributed at most linearly.
This follows essentially because the order ρ of F is 2; we will show that the
any Fourier-Laplace transform of any potential that we are considering has
zeroes which are distributed at most linearly (ρ ≥ 1).

1.3 Outline of the thesis

In Chapter 2, we review the complex-analytic preliminaries that will be used
throughout this thesis. In particular, we give a proof of Titchmarsh’s theorem

3By “far from R”, we mean that there is a uniform ε > 0 such that for every resonance
reiθ which is “far from R”, sin θ > ε.
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on the zeroes of a Fourier transform, Theorem 2.26, which is somewhat more
detailed than the proof that appears in Hörmander’s book [7]. In Chapter 3,
we review the basic theory of scattering for compactly supported potentials,
roughly following Dyatlov and Zworski [1], and use Theorem 2.26 to give a
proof of the Breit-Wigner approximation, Theorem 3.24. Finally, in Chapter
4, we discuss relevant results from Froese’s paper [4] and then prove Theorem
1.7.

1.4 Acknowledgements

I would like to thank Prof. Maciej Zworski for suggesting this topic and
mentoring me, as well as teaching me much of what I know about partial
differential equations, harmonic analysis, and complex analysis. This thesis
would not have appeared without him. I would also like to thank Erik Wendt
and James Leng for various helpful discussions.

This work is dedicated to Java Darleen Villano, who has given me emo-
tional (and mathematical!) support when I needed it the most.
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Chapter 2

Review of complex analysis

We review the main prerequisites of this thesis in this chapter. In Section
2.1 we recall the basics of distributional calculus, Fourier-Laplace transforms,
and the Paley-Wiener theorem, and in Section 2.2 we discuss the relationship
of the growth of an entire function f to the distribution of the zeroes of f .
Both of these sections are used throughout. In Sections 2.3 and 2.4 we give
Beurling’s proof of Titchmarsh’s theorem, which is used in the proof of the
Breit-Wigner approximation. In Section 2.5 we discuss the “Schatten classes”
Bp, which are necessary to define the Fredholm determinant used in the setup
of the proof of main theorem.

2.1 The Fourier-Laplace transform

We recall basic facts about the Fourier-Laplace transform of a distribution.
The exposition given here is based on [6, Chapter VII].

Let µ be a distribution on R, i.e. a continuous linear functional space
of test functions C∞comp(R). We will abuse notation and write

∫
E
fµ for the

pairing of f1E and µ, whenever it is defined. If µ satisfies certain growth
conditions, then the Fourier-Laplace transform

µ̂(ξ) =

∫ ∞
−∞

e−ixξµ(x) dx

is well-defined and is also a distribution. We will abuse terminology and refer
to the Fourier-Laplace transform as simply the Fourier transform, since it is
the analytic continuation of the Fourier transform from R to the entire plane
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C, and we will rarely need to refer to the classical Fourier transform (only
defined for ξ ∈ R). However, we will on occasion need to talk about the
Laplace transform, i.e. the function η 7→ µ̂(iη) on R.

Definition 2.1. For α, β multiindices, we define the (α, β)th Schwartz semi-
norm on Ω ⊆ Cn by

||f ||α,β = sup
x∈Ω
|xα∂βf(x)|.

The locally convex space of all f for which every Schwartz seminorm ||f ||α,β
is finite is called the Schwartz space. A tempered distribution is a distribution
g whose pairing with every element of Schwartz space is finite.

If a distribution is tempered on Rn, then its Fourier transform is well-
defined and also tempered. This can be easily proven using duality once it
is shown that the Fourier transform is an automorphism of Schwartz space.
Most distributions or functions which are “not too discontinuous” and “do
not grow too fast” are tempered distributions. For example, any compactly
supported distribution is tempered, as is any smooth, polynomially growing
function.

If E ⊂ R is bounded, then the convex hull of E, chE, is defined to
be the intersection of all compact, convex subsets containing E; since chE
is connected, it must be the compact interval [a, b], where a = inf E and
b = supE.

Definition 2.2. The supporting function hE of a bounded set E ⊂ R is
defined for ξ ∈ R by

hE(ξ) = sup
x∈E

xξ.

Taking the closure of E will not affect hE. Then for ξ > 0, hE(ξ) = bξ,
hE(0) = 0, and hE(−ξ) = −aξ. Taking the convex hull will not change a or
b, so hE = hchE.

We recall that the notation A .t B means that there is a constant C > 0
which depends on t, such that A ≤ BC.

Lemma 2.3. Let F be an entire function, and assume that there is a super-
exponentially decreasing distribution µ such that F = µ̂. Then for every
η,

|F (·+ iη)| .η,µ 1

and in particular F |R is a tempered distribution.
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Proof. Fix η; then for every ξ,

|F (ξ + iη)| =
∣∣∣∣∫ ∞
−∞

µ(x)e−ixξexη dx

∣∣∣∣
≤
∫ ∞
−∞
|µ(x)|exη dx.

Since µ is super-exponentially decreasing, 〈µ, eη·〉 exists, and is a bound on
|F (ξ + iη)| which is uniform in ξ.

In particular F |R is bounded and smooth, hence tempered.

Let us fix some notation. Let Eδ denote the ball around E of radius δ;
that is,

Eδ = {x ∈ R : ∃y ∈ E |x− y| < δ}.

For µ a distribution on R, we will write ||µ|| = |
∫∞
−∞ µ(x) dx|, if such an

integral is indeed finite. So if µ is actually a positive function, then ||µ|| =
||µ||L1 .

Definition 2.4. Let f be a entire function. The order ρ of f is defined by

ρ = inf{m ∈ R : f(z) = O(exp(|z|m))}.

It is easy to see that the order ρ of f is given by

ρ = lim sup
r→∞

log log sup|z|=r |f(z)|
log r

.

This motivates the following definition.

Definition 2.5. The type τ of f is

τ = lim sup
r→∞

log sup|z|=r |f(z)|
rρ

.

If τ ∈ (0,∞), then we say that f is has a normal type. If ρ = 1 and f is of
normal type, then we say that τ is the exponential type of f .

We now show that a quantitative property of a distribution (the length
of its support) is related to a quantitative property of its Fourier transform,
the exponential type of its Fourier transform.
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Theorem 2.6 (Paley-Wiener). Let E ⊂ R be bounded. If µ is a distribution
on R with suppµ ⊆ E, then the Fourier transform µ̂ is an entire function
satisfying the estimate

|µ̂(ζ)| = O(ehE(Im ζ)).

In particular, µ̂ is of exponential type supx∈E |x|. Conversely, for every entire
function f such that |f(ζ)| = O(ehE(Im ζ)), there is a distribution µ on R with
suppµ ⊆ chE and µ̂ = f .

Proof. Since µ is compactly supported, it lies in the dual of C∞(R). So
||µ|| is finite, and we can differentiate µ̂ by putting all derivatives on the
smooth function e−ixξ, using integration by parts. Therefore µ̂ ∈ C∞(C). In
particular, if ∂ is the Cauchy-Riemann operator, then we can use the fact
that ∂e−ixξ = 0 (since e−ixξ is clearly entire). Therefore µ̂ is entire.

Let Im ζ > 0 and chE = [a, b]. Then

|µ̂(ζ)| ≤
∫ ∞
−∞
|e−ixζµ(x)| dx ≤ ||µ||

∫ b

a

ex Im ζ dx ≤ ||µ||ehE(Im ζ).

For the converse, let f be an entire function satisfying |f(ζ)| = O(ehE(Im ζ)).
Then the restriction f̃ = f |R is tempered, so has an inverse Fourier transform
µ.

Let ϕ ∈ C∞comp((−1, 1)) be a positive function, normalized so that such

that
∫ 1

−1
ϕ = 1, and set ϕδ(x)ϕ(x/δ)/δ. (In fact, we can take ϕ to be the

standard mollifier.) Thus µ ∗ ϕδ is a mollification of µ, i.e. µ ∗ ϕδ ∈ C∞(R)
and limδ→0 µ ∗ ϕδ = µ. µ̂ ∗ ϕδ = µ̂ϕ̂δ = f̃ ϕ̂δ. Taking the unique analytic
continuation of f̃ to C, we extend f̃ ϕ̂δ to fϕ̂δ.

Since ϕδ is supported in (−δ, δ), |ϕ̂δ(ζ)| = O(δ| Im ζ|). Therefore

|f(ζ)ϕδ(ζ)| = O(exp(hE(Im ζ) + δ| Im ζ|)).

If we can prove the converse for µ ∈ C∞comp(R), then we can replace µ by
µ ∗ ϕδ to show that supp(µ ∗ ϕδ) ⊆ ch suppEδ. Since δ was arbitrary, it
will follow that suppµ ⊆ ch suppE. Thus, we may assume without loss of
generality that µ ∈ C∞comp(R).

In fact, if µ ∈ C∞comp(R), then in particular µ lies in Schwartz space. In
this case, we can find a Cn, independent of ζ = ξ + iη, so that

|ζnf(ζ)| ≤ Cne
hE(Im ζ).
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Dividing both sides by |ζ|−n, we have

|f(ξ + iη)| ≤ Cn
ehE(η)

|ξ + iη|n
.

Thus for η fixed, f(·+ iη) is rapidly decreasing. Thus we can make a change
of variables to see that

µ(x) =
1

2π

∫ ∞
−∞

eixξf(ξ) dξ =
1

2π

∫ ∞
−∞

eix(ξ+iη)f(ξ + iη) dξ.

Therefore

|µ(x)| ≤ CNe
−xη+hE(η)

∫ ∞
−∞

dξ

|ξ + iη|N
.

We fix a sufficiently large N and let η → 0. This proves that µ(x) = 0 if
xη ≤ hE(η), which happens if and only if x /∈ chE. Therefore suppµ ⊆
chE.

Since the Paley-Wiener theorem is a biconditional, the estimate

|µ̂(ζ)| ≤ ||µ||ehE(Im ζ)

is sharp: we cannot replace the a, b appearing in the piecewise-linear defi-
nition of hE with better constants. This precision will be important in the
proof of Theorem 2.26.

For any distribution µ with bounded support suppµ, the Paley-Wiener
theorem guarantees that µ̂ is an entire function. In particular, the num-
ber of zeroes of µ̂ lying in any compact set is necessarily finite, even when
counted with multiplicity, assuming that µ 6= 0; the zeroes will be counted
by Theorem 2.26.

We will also need the following lower bound on Fourier transforms, which
easily follows from the proof of the Paley-Wiener theorem.

Lemma 2.7. Let µ be a super-exponentially decreasing distribution, and as-
sume that µ̂ is an entire function. If ρ is the order of µ̂, then either ρ ≥ 1,
or ρ = 0 and suppµ = sing suppµ = {0}.

Proof. Let F = µ̂ and suppose towards contradiction that ρ < 1. Then, in
particular, F (ξ + iη) = o(eη).
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Since F is a Fourier transform, by Lemma 2.3, µ is tempered. Let ϕ
be the standard mollifier, so µ ∗ ϕδ is the standard mollification of µ and
µ̂ ∗ ϕδ = Fϕ̂δ, and

|F (ξ + iη)ϕδ(ξ + iη)| = O(eδη).

Since µ ∗ ϕδ is compactly supported, by the Paley-Wiener theorem, µ ∗ ϕδ is
supported on [−δ, δ]. Since δ was arbitrary, it follows that suppµ ⊆ {0} and
the claim follows.

2.2 Growth of entire functions

Recall that our potential V is assumed to be super-exponentially decreasing.
This justifies the differentiation under the integral sign

∂V̂ (ξ) =

∫ ∞
−∞

∂ξV (x)e−ixξ dx = 0

whence V̂ is an entire function. We do not have the Paley-Wiener theorem
in this case, but we can still recover some results about the growth of entire
functions.

The growth of an entire function is closely tied to its distribution of zeroes,
as given by the angular counting function.

Definition 2.8. Let R > 0 and let θ, ϕ be angles; let ΓR,θ,ϕ be the contour
around the sector

{reiξ ∈ C : r < R and ξ ∈ (θ, ϕ)}.

Given an entire function f which is not identically 0, its angular counting
function N to be the number of zeroes of f inside ΓR,θ,ϕ, counted by multi-
plicity.

Note that by the argument principle, the angular counting function could
also be defined by the contour integral

N(R, θ, ϕ) =

∫
ΓR,θ,ϕ

f ′(z)

f(z)
dz.

We now show that we can determine whether a distribution is of compact
support by considering its order.
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Lemma 2.9. Let µ be a super-exponentially decreasing distribution which is
not identically zero, and let F = µ̂. Suppose that F is of normal type, and
let ρ be the order of F . Then ρ ≥ 1, and ρ = 1 if and only if µ has compact
support.

Proof. Since F is a Fourier transform, F (ξ + iη) is bounded in ξ if η is held
fixed. To see this, note that

|F (ξ + iη)| =
∣∣∣∣∫ ∞
−∞

µ(x)e−ixξexη dx

∣∣∣∣ ≤ ∫ ∞
−∞
|µ(x)|exη dx.

The last integral converges because µ is assumed super-exponentially decreas-
ing, so µ(x) = O(e−2xη) whence µ(x)exη = O(e−xη). Therefore F (ξ + iη) =
O(g(η)) for some function g which does not depend on ξ, and ρ = inf{m :
g(η) = O(eη

m
)}.

If µ has compact support, then by the Paley-Wiener theorem, Theorem
2.6 for every ε > 0 and some τ > 0 which depends on suppµ, g(η) = O(eτη) =
O(eη

1+ε
), and this estimate is sharp; therefore ρ = 1. Conversely, if ρ = 1,

then because F is of normal type there is a τ > 0 such that g(η) = O(eτη),
and then the Paley-Wiener theorem bounds sup{|x| : x ∈ suppµ} in terms
of τ , so suppµ is compact.

We finally show that ρ ≥ 1. So suppose that ρ < 1, and let χ be the
indicator function of a compact set K such that

∫
K
|µ| 6= 0. (Such a set K

must exist, since µ is not identically zero.) Since ρ 6= 1, µ is not compactly
supported, so there is a µ0 which does not have compact support such that
µ = µχ+µ0, so that F = µ̂χ+ µ̂0. Since µ0 is not compactly supported, the
order ρ0 of µ̂0 satisfies ρ0 6= 1. On the other hand, the order of ρ̂χ is 1.

If ρ0 < 1, then µ̂0 is strictly dominated by µ̂χ along any line ξ + iη as
η → ∞ and ξ is held fixed, so ρ is given by the order of µ̂χ, and so ρ = 1.
(Running this argument again then shows that ρ0 < 1 implies a contradiction,
but we did not know this a priori.) On the other hand, if ρ0 > 1, then µ̂χ is
strictly dominated by µ̂0 on the imaginary axis, so ρ = ρ0 > 1. Either way,
ρ ≥ 1.

If f is of normal type τ , then we can understand how quickly f grows
along a ray {reiθ : r > 0} by understanding the growth rate of the logarithm
in the definition of τ . This information is encoded by the indicator function
of f .
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Definition 2.10. Let f be an entire function of order ρ and normal type.
The indicator function h of f is given by

h(θ) = lim sup
r→∞

log |f(reiθ)|
rρ

.

Suppose that α < β are angles. If the lim sup appearing in the definition
of h is actually a uniform limit as r → ∞ along a subset of {reiθ : r > 0}
of density 1 for every θ ∈ (α, β), then f is said to have completely regular
growth in (α, β). If f is of completely regular growth and order ρ, then we
define

s(θ, ϕ) = h′(θ)− h′(ϕ) + ρ2

∫ ϕ

θ

h(ξ) dξ

for every θ, ϕ such that h′ exists and is continuous at θ, ϕ.

We will need two facts about the indicator function of a function of com-
pletely regular growth, and we omit their proof. They can be found in Levin
[8, Chapter III].

Theorem 2.11. For every function f of completely regular growth, there is
a countable set Z ⊂ [0, 2π] such that the indicator function h is continuously
differentiable on [0, 2π] \ Z. In particular, for every θ /∈ Z, ϕ 7→ s(θ, ϕ) is
continuous on Z.

Theorem 2.12. Let f be a function of completely regular growth. Let α <
θ < ϕ < β be angles such that s(θ, ϕ) exists. Then

s(θ, ϕ) = 2πρ lim
r→∞

N(r, θ, ϕ)

rρ
.

Finally, we will need a Weierstrass-type theorem that was due to Titch-
marsh. We omit its proof, but refer the reader to Titchmarsh’s original paper
[11, Theorem VI].

Theorem 2.13. Suppose that µ is a distribution and ch suppµ = [a, b]. Let
{zn} be an enumeration of the zeroes of µ̂ such that |zn| ≤ |zn+1|, and suppose
that µ̂(0) 6= 0. Then

µ̂(z)

µ̂(0)
= e−i(a+b)z/2

∏
n

(
1− z

zn

)
.
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It follows from Theorem 2.26 that there are infinitely many zn, and that
N(R) ∼ R, so one can show that the product in Theorem 2.13 is just con-
ditionally convergent. It is this reason that forces us to add the condition
|zn| ≤ |zn+1|, as otherwise we could use a Riemann rearrangement to find a
counterexample to Theorem 2.13.

2.3 Subharmonic functions

We will review the proof of the Riesz representation formula for certain sub-
harmonic functions on the upper-half plane C+. This material will be used
in the proof of Theorem 2.26, which in turn will be used in the proof of the
Breit-Wigner approximation for compactly supported potentials, Theorem
3.24.

Fix an open set Ω ⊆ C. Recall that a function u : Ω→ [−∞,∞) which is
upper-semicontinuous is called subharmonic if for each z ∈ C, the averages

M(z, r) =
1

2π

∫ 2π

0

u(z + reiθ) dθ

are increasing in r. This condition is logically equivalent to assuming that
u satisfies a maximum principle: for every compact set K with nonempty
interior U , if u|K attains its maximum on U , then u|K is a constant. To
avoid trivialities, we shall assume that u is not identically −∞, though not
every author makes this assumption.

It is a well-known result that an upper-semicontinuous function u is sub-
harmonic iff the weak Laplacian ∆u ≥ 0; that is, for any nonnegative test
function ϕ ∈ C∞comp(Ω), ∫

Ω

u(z)∆ϕ(z) dz ≥ 0.

If actually ∆u = 0, then we call u harmonic; by a typical mollification
argument, if u is harmonic, then u is actually smooth (even real analytic), but
such niceties may not be true for subharmonic functions. The reason why we
refer to functions u with ∆u ≥ 0 as subharmonic rather than superharmonic
is that −∆ is a positive operator, and so we think of applying ∆ as akin to
“multiplying by a negative function”. Such a function lies in L1

loc(Ω). (For
the proofs, see [5, Chapter 1].)
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By the Paley-Wiener theorem, Theorem 2.6, if µ is a distribution with
ch suppµ = [a, b], then µ̂ is an entire function which satisfies the estimate

µ̂(x+ iy) ≤ Ceh(y)

for some constant C, where h(y) = by for y > 0, h(y) = ay for y < 0. In
particular, in the upper half-plane C+, we have the estimate

µ̂(x+ iy) ≤ Ceby.

Moreover, since µ̂ is holomorphic, it solves the Cauchy-Riemann equation
∂µ̂ = 0. Since we can factor the Laplacian as 4∆ = ∂∂, it follows that
∆µ̂ = 0.

Let

E(z) =
log |z|

2π
.

Then E is the fundamental solution of the Laplacian. This means that
∆E = δ0, where δz denotes the Dirac distribution centered at z. In particular,
the solution of the equation ∆u = f is u = E ∗ f .

Since µ̂ is holomorphic, if it has a zero z ∈ C+ of multiplicity m, we can
write

µ̂(ζ) = (ζ − z)mg(ζ)

for some holomorphic function g with g(z) 6= 0. If g 6= 0 everywhere, then,
because ∆g = 0, it follows that

∆ log |µ̂| = m log |ζ − z|+ log |g| = 2πmδz.

Using a partition of unity to sum over all zeroes in this manner, it follows
that if Z denotes the multiset of zeroes of µ̂ counted with multiplicity, then

∆(log |µ̂|) = 2π
∑
z∈Z

δz ≥ 0.

It follows that log |µ̂| is subharmonic and, on C+, satisfies the estimate

log |µ̂(x+ iy)| ≤ C +Dy

for some constants C,D, by the Paley-Wiener theorem, Theorem 2.6

Definition 2.14. Let u be a subharmonic function on C+. If there are
constants C,D > 0 so that u(x + iy) ≤ C + Dy, then we say that u is
imaginary-sublinear .
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It is immediate that log |µ̂| is imaginary-sublinear.

Lemma 2.15. Let u be an imaginary-sublinear subharmonic function on C+

and define
γ = lim

y→∞
sup
x
u(x+ iy).

Then γ is well-defined, and γ ∈ (−∞, D].

Proof. We first let
M(y) = sup

x
u(x+ iy).

Then γ = limyM(y), and M(y) ≤ C +Dy since u is imaginary-sublinear.
Let us prove that M is convex. Let 0 < a < b and let L : R → R be a

linear function such that M(a) ≤ L(a) and M(b) ≤ L(b). Let

v(x+ iy, ε) = u(x+ iy)− L(y)− ε(x2 − (y2 − b2)).

Then v(· + iy0, ε) ≤ 0 for y0 ∈ {a, b}. Similarly, limx→±∞ v(x + ·, ε) = −∞.
Moreover, ∆v(·, ε) ≥ ∆u ≥ 0.

Applying the maximum principle to a sufficiently large compact subset
K, and noting that v(·, ε) ≤ 0 on ∂K, v(·, ε) ≤ 0 on K, hence globally since
K was arbitrary. Taking ε→ 0, we see that u(x+ iy) ≤ L(y), so maximizing
over x, M ≤ L on [a, b]. So M is convex. But the limit of a sublinear, convex
function exists, so γ is well-defined, and γ > −∞ since u ∈ L1

loc(Ω), hence
not −∞ except on a discrete set. The bound γ ≤ D follows easily.

We now begin working towards a representation formula for imaginary-
sublinear functions on the upper-half plane in terms of their Laplacian and
their boundary values. To do this, we construct the Green function of ∆ in
the half plane.

Definition 2.16. The Green function for ∆ on C+ is defined on C+ ×C+

by
G(z, w) = E(z − w)− E(z − w).

The Poisson kernel for ∆ on C+ is defined on C +× R by

P (z, x) = −∂G(z, x+ iy)

∂y
|y=0.
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To motivate the definition of a Green function, suppose that we want to
solve the boundary-value problem for ∆ on C+. That is, given any function
f ∈ C(R), we want to find a harmonic function u on C+ which continuously
extends to R, such that u|R = f . If we can find a function G on C+ ×C+

such that ∆G(z, w) = δzw which continuously extends to 0 on R, then one
can use Stokes’s theorem to see that

u(z) =

∫ ∞
−∞

f(x)P (z, x) dx,

since by definition the Poisson kernel is the normal derivative (i.e. infinitesi-
mal of the flux) of G along R. Now G(z, w) = E(z−w) would suffice as such
a function, except that it is nonzero at the boundary. On the other hand,
∆zE(z−w) = 0 for z, w ∈ C+, and by symmetry introducing this error term
will cancel out the boundary term in E(z − w).

One has ∆wG(z, w) = ∆wE(z − w) = δz since w /∈ C+, hence z 6= w.
Moreover, limw→0G(z, w) = 0 for z fixed. We can rewrite G as

G(z, w) =
1

2π
log

∣∣∣∣z − wz − w

∣∣∣∣ ,
which is clearly homogeneous: for t > 0, G(tz, tw) = G(z, w). Since (z −
w)/(z − w)→ 1 as z →∞, G(z, w)→ 0. Moreover,

∂yG(z, x+ iy) = − 1

2π

(
y − Re z

|x+ iy − z|2
− y + Re z

|x+ iy − z|2

)
and setting y = 0 we have

P (z, x) =
Im z

2π|z − x|2
.

We have the estimate P (z, x) = O(Im z|z|−2) for small x as z → ∞. In the
other direction, P is a nascent Dirac mass in the sense that

lim
b→0

P (a+ ib, x) = δx(a).

Moreover, ∆G(·, w) = 0 away from w, so commuting ∂y and ∆, we see that
P (·, x) is harmonic on C+.

To prove the representation formula, we will need some estimates on the
Green function’s order of growth.
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Lemma 2.17. For every w ∈ C+ there is a constant C > 0 such that for
every z ∈ C+ such that |z| is large enough,

Im z

C(1 + |z|)2
≤ |G(w, z)| ≤ C Im z

(1 + |z|)2
.

Proof. Let z = x + iy. Let us Taylor expand G(w, z) in y at the origin, so
G(w, z) =

∑
j cj(w, x)yj. Since G = 0 on R, cj = 0. By definition of the

Poisson kernel, c1 + P = 0. By homogeneity,

G(w, z) = G

(
w

|z|
,
z

|z|

)
=
∞∑
j=0

cj

(
w

|z|
,
x

|z|

)
yj|z|−j

= −P
(
w

|z|
,
x

|z|

)
y

|z|
+ o

(
y

|z|2

)
= −Θ

(
P

(
w

|z|
, 0

))
= Θ

(
Im z

|1 + z|2

)
where the implied constants are allowed to depend on w, and we have used
Knuth’s big-Θ notation. Indeed, if |z| is large then x/|z| is small, and so
does not contribute meaningfully to the long-term behavior of P .

We shall also need a representation formula for the unit disc D. We
recall that the Cayley transform, which we will denote z 7→ z[ (with inverse
w 7→ w]), conformally transforms C+ into D, and so all that we have proven
about C+ corresponds to a fact about D. The Cayley transform is given by

z[ =
z − i
z + i

.

Pushing forward the Poisson kernel along the Cayley transform, we arrive at
the following definition.

Definition 2.18. The Poisson kernel for ∆ on D is defined by

P [(z, θ) = P (z], (eiθ)]).

Theorem 2.19 (Poisson representation formula). Let f ∈ C(∂D) and let

F (z) =

∫ 2π

0

P [(z, θ)f(eiθ) dθ.

Then F is the unique solution to the boundary-value problem for ∆ with
boundary condition f .
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Proof. Since P is harmonic, it follows that P [ is harmonic as well, and∫ 2π

0

P [(z, θ) dθ =

∫ ∞
−∞

P (z], x) dx = 1.

So for any r ∈ (0, 1) and any ε > 0, we have the estimate

|F (reiθ)− f(eiθ)| ≤
∫ 2π

0

P [(reiθ, eiη)|f(eiθ)− f(eiη)| dη

≤ sup
Bε

|f(eiθ)− f(eiη)|

+

∫
Bcε

P [(reiθ, eiη)|f(eiθ)− f(eiη)| dη

≤ sup
Bε

|f(eiθ)− f(eiη)|

+ sup
Bcε

P [(reiθ, eiη)

∫
Bcε

|f(eiθ)− f(eiη)| dη

where Bε is a interval in [0, 2π] modulo 2π of radius ε centered on eiθ. Since
f is continuous,

lim
ε→0

sup
Bε

|f(eiθ)− f(eiη)| = 0.

On the other hand, since P (z], x)→ 0 uniformly in x as z] →∞, P [(z, x[)→
0 uniformly in x[ as |z| → 1, provided that we are away from the singularity
z = x[. Thus

lim
r→1

F (reiθ) = f(eiθ)

uniformly in θ. So F |∂D = f . By the maximum principle, F is unique.

Recall the reflection principle, which says that h is a harmonic function
on B(0, R) ∩C+ such that h|R = 0, then h extends to a harmonic function
on B(x,R) such that

h(z) + h(z) = 0.

Taking R → ∞, we see that the reflection principle still holds for harmonic
functions on C+ such that h|R = 0. Let us now use the Poisson representation
formula to show that the only such functions are linear.

Lemma 2.20. The Poisson kernel P [ has the asymptotic expansion

P [(z/R, eiθ)− P [(z/R, eiθ) =
2 Im z sin 3θ

Rπ
+O(R−2)

as R→∞, where (z, θ) is fixed.
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Proof. We Taylor expand P [(z/R, eiθ)−P [(z/R, eiθ) in R at infinity (in other
words, take the Maclaurin expansion in 1/R). Clearly the zeroth-order term
is 0, and the second order term is O(R−2). So we must only show that

lim
R→∞

∂R−1(P [(z/R, eiθ)− P [(z/R, eiθ)) =
2

π
Im z sin 3θ.

We calculate

P [(z, eiθ) =
Im
(
z+1
iz−i

)
2π
∣∣∣ z+1
iz−i −

eiθ−1
ieiθ−i

∣∣∣2 =
−Re

(
z+1
z−1

)
2π|z + 1− eiθ − 1|2

=
(1− |z|2)

2π|z − eiθ|2
.

Now
∂t(1− t|z|2)|t=0 = 0

and

∂t

(
1

|tz − eiθ|2
− 1

|tz − eiθ|2

)
|t=0 = 4ei(π−3θ) Im z.

Therefore

lim
R→∞

∂R−1(P [(z/R, eiθ − P [(z/R, eiθ))) = Re
2

π
ei(π−3θ) Im z =

2

π
Im z sin 3θ,

as promised.

Corollary 2.21. Let h : C → R be a harmonic function such that h(z) +
h(z) = 0 for every z ∈ C. Then there is an A ∈ R such that h(z) = A Im z
for every z ∈ C.

Proof. ∫ 2π

π

P (z, eiθ)h(eiθ) dθ = −
∫ π

0

P (z, eiθ)h(eiθ) dθ

so by the Poisson representation formula, for any R > 0,

h(z) =

∫ π

0

(P (z/R, eiθ − P (z/R, eiθ))h(Reiθ) dθ.

By Lemma 2.20, we have

h(z) =

(
2 Im z

π
+O(R−1)

)∫ π

0

h(Reiθ)

R
sin 3θ dθ.
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Since the left-hand side of the resulting asymptotic expansion of h does not
depend on R, the limit of the right-hand side as R → ∞ must exist, and
taking

A = lim
R→∞

2

π

∫ π

0

h(Reiθ)

R
sin 3θ dθ,

we conclude that h(z) = A Im z. Since h is real-valued, A ∈ R.

Now we are ready to prove the Riesz representation formula for C+.

Theorem 2.22 (Riesz representation formula). Let u be an imaginary-sublinear
subharmonic function on C+, let γ be as in Lemma 2.15, and fix any w ∈ C+.
Let µ = ∆v; then ∫

C+

Im zµ(z) dz

(1 + |z|)2
<∞. (2.1)

Moreover v(·+ iy) converges to a distribution σ on R as y → 0 such that, in
the sense of distributions, ∫ ∞

−∞

|σ(x) dx|
(1 + |x|)2

<∞, (2.2)

and

u(z) =

∫
C+

G(z, w)µ(w) dw +

∫ ∞
−∞

P (z, x)σ(x) dx+ γ Im z. (2.3)

Proof. Let us replace u(z) with u(z) − C − γ Im z, where C is the constant
appearing the definition of an imaginary-sublinear function. Then u(z) ≤
D+Im z, and if we take an optimal choice of D, then D ≤ 0, so u ≤ 0. After
completing the proof, we can simply add a γ Im z back in, the C having
already been absorbed into the boundary term σ.

We first prove (2.1). Recall that we have assumed that there is a z ∈ C+

so that u(z) > −∞. Moreover, for any x ∈ R, G(z, x) = 0 By Lemma 2.17,
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for some constant B > 0,∫
C+

Imw

(1 + |w|)2
µ(w) dw ≤ −B

∫
C+

G(z, w)∆u(w) dw

= B

∫
C+

∇G(z, w)∇u(w) dw

+B

∫ ∞
−∞

G(z, x)∇u(x) dx

= −B
∫
C+

∆G(z, w)u(w) dw

= −B
∫
C+

δz(w)u(w) dw = −Bu(w) <∞.

Now we decompose u. Fix an increasing chain Kj of compact sets which
cover C+, and let χj ∈ C∞comp(C+) be an increasing chain of cutoff functions
which are identically 1 on Kj. Then let

vj(z) = u(z)−
∫
C+

G(z, w)χj(w)µ(w) dw.

Lemma 2.23. The functions vj are subharmonic on C+, harmonic on Kj,
and ≤ 0.

Proof of lemma. We compute

∆vj(z) = µ(z)−
∫
C+

∆z(E(z − w)− E(z − w))χj(w)µ(w) dw

= µ(z)−
∫
C+

(δw(z)− δw(z)χj(w)µ(w) dw

= µ(z)(1− χj(z)),

the δw term vanishing because z 6= w, since w /∈ C+. Since χj is a cutoff,
χj ≤ 1, so ∆vj ≥ 0. On the other hand, if z ∈ Kj, then 1 − χj(z) = 0, so
∆vj(z) = 0. This proves the first two claims.

Let ε > 0; we will prove that vj < ε. Since u is subharmonic, µ ≥ 0, and
χj ≥ 0 while G ≤ 0, so∫

C+

G(z, w)χj(w)µ(w) dµ(w) ≤ 0,
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and we are only integrating over w close to the compact set Kj. So we can
view w as essentially fixed compared to z, and apply the estimate G(z, w) =
O(Im z|z|−2) to see that

lim
z→∞

∫
C+

G(z, w)χj(w)µ(w) dµ(w)→ 0.

In particular,
∫
C+

G(z, w)χj(w)µ(w) dµ(w) > −ε for |z| large enough. Since

u ≤ 0, vj(z) < ε for z large enough, hence for any z by the maximum
principle. Therefore vj < 0.

The vj form an increasing sequence which is bounded above, so converge
to a limit u1 ≤ 0. Moreover, ∆vj → 0 pointwise, so u1 is harmonic. Mean-
while, χj → 1 pointwise, so if we let

u2(z) =

∫
C+

G(z, w)µ(w) dw,

we arrive at the decomposition u = u1 + u2, ∆u1 = 0. We will view u1 as
the “boundary part” of u and u2 as the “subharmonic part” of u.

We now show that the subharmonic part of u does not contribute to its
boundary value.

Lemma 2.24. In the sense of distributions,

lim
y→0

u2(·+ iy) = 0.

Proof of lemma. Let ϕ ∈ C∞comp(R) be a test function, ch suppϕ = [a, b]. We
must show that the limit

lim
y→0

∫ ∞
−∞

u2(x+ iy)ϕ(x) dx = lim
y→0

∫
C+

µ(w)

∫ ∞
−∞

G(x+ iy, w)ϕ(x) dx dw = 0.

Now G(x + iy, w) vanishes for fixed w, x as y → 0, and G(x + iy, w)ϕ(x) =
O(Imw|w|−2) at infinity by Lemma 2.17. If we can show that this bound is
valid on compact sets as well, then we will have∫

C+

µ(y, w)H(y, w) dw ≤
∫
C+

Im zµ(z) dz

(1 + |z|)2
<∞
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by (2.1), whence

lim
y→0

∫ ∞
−∞

u2(x+ iy)ϕ(x) dx = lim
y→0

∫
C+

µ(y, w)H(y, w) dw = 0

by the dominated convergence theorem.
We now define

F (w) =

∫ ∞
−∞

E(w − x)ϕ(x) dx.

Now E is continuous away from 0, but Imw > 0, so the integrand is contin-
uous. The integral is formally taken over R, but is actually being taken
over [a, b], so the integrand is integrable; hence F is continuous. Since
∆E(w−x) = 0 for Imw > 0, F is harmonic. But F is a convolution, so if P
is any linear differential operator in Rew, PF = E ∗Pϕ, which is continuous
since ϕ is smooth. Therefore PF is locally bounded. In particular,

∂2
ImwF (w) = ∆F (w)− ∂2

RewF (w) = −∂2
RewF (w)

which is locally bounded. So PF is locally bounded for any linear differential
operator whatsoever. In particular, F ∈ CLip

loc (C+). Because F (w) is bounded
for a fixed Imw, since F is continuous and Re a ranges over the compact set
[a, b], we have F (w) = O(Imw). That is,∫ ∞

−∞
G(x+ iy, w)ϕ(x) dx = F (w + iy)− F (w + iy) = O(Imw)

for bounded y. In particular, the integral is bounded on any compact set in
w. Therefore ∫ ∞

−∞
G(x+ iy, w)ϕ(x) dx = O

(
| Imw|

(1 + |w|2)

)
.

By the remarks at the start of this proof, the lemma follows.

We now will construct a representation formula for the boundary part.

Lemma 2.25. For any ε > 0 and y > ε,

u1(x+ iy) =

∫ ∞
−∞

P (x+ i(y − ε), t)u1(t+ iε) dt.
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Proof of lemma. Let ψj be an increasing sequence of cutoff functions on R
which are identically 1 on [−j, j]. Then

hj(z) = u1(z + iε)−
∫ ∞
−∞

P (z, x)ψj(x)u1(x+ iε) dx.

Then for z ∈ C+,

∆hj(z) = −∆

∫ ∞
−∞

P (z, x)ψj(x)u1(x+ iε) dx

= −
∫ ∞
−∞

∆zP (z, x)ψj(x)u1(x+ iε) dx = 0

since P (·, x) is harmonic on C+. So the hj are harmonic on C+. Since P is
a nascent Dirac mass, if Im z = 0, then

hj(z) = u1(z+ iε)−
∫ ∞
−∞

δx(z)ψj(x)u1(x+ iε) dx = u1(z+ iε)(1−ψj(x)) ≤ 0

since u1 ≤ 0. On the other hand, P (z, x) is small when |z| is large; so

lim sup
z→∞

hj(z) ≤ − lim inf
z→∞

∫ ∞
−∞

P (z, x)ψj(x)u1(x+ iε) dx

= −
∫ ∞
−∞

lim inf
z→∞

P (z, x)ψj(x)u1(x+ iε) dx = 0.

Therefore hj|∂C+ ≤ 0, so by the maximum principle, hj ≤ 0.
Therefore the hj increase to a harmonic function h, which by the reflection

principle, extends uniquely to C and satisfies h(z) + h(z) = 0. By Corollary
2.21, we can find a A ∈ R such that h(z) = A Im z. By our assumption that
C = γ = 0, it follows that A = 0, so h = 0. But

u1(z + iε) = lim
j→∞

hj(z) +

∫ ∞
−∞

P (z, x)ψj(x)u1(x+ iε) dx

=

∫ ∞
−∞

P (z, x)u1(x+ iε) dx.

The lemma then follows by changing variables.
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Since γ = 0 and u ≤ 0, for every δ > 0 and every x ∈ R, we can choose
y > 0 so large that u(x+ iy) > −δy. Since G vanishes at infinity, so does u2,
so if y is chosen even larger still, we can arrange that u1(x+ iy) > −δy. By
Lemma 2.25 with a change of variable in y,

−
∫ ∞
−∞

u1(x+ iε)

|x+ iy − t|2
dt <

πδy

y − ε
.

Taking ε and R large enough, we can find a constant B > 0 such that(∫ −R
−∞

+

∫ ∞
R

)
−u1(x+ iε)

x2
dx < Bδ.

This estimate is uniform in ε, and u1(· + iε) is bounded on [−R,R] since it
is harmonic; these bounds are also uniform in ε. Certainly any test function
on R decays faster than x2, so it follows that u1(·+ iε) is uniformly bounded
in ε as a functional acting on C∞comp(R). So by the Banach-Alaoglu theorem,
the space of all such distributions u1(·+iε) is weakstar compact, and so there
is a weak limit σ as ε → 0. Since σ satisfies the same bounds as u1(· + iε),
(2.2) follows, and, passing to the limit in Lemma 2.25,

u1(z) =

∫ ∞
−∞

P (z, x)σ(x) dx.

Plugging the representation formulae for u1 and u2 back into the decompo-
sition u = u1 + u2, we complete the proof.

2.4 Titchmarsh’s theorem

Our goal is to prove the following theorem, which was first proven by Titch-
marsh [11]. The proof we give is based on the proof of Beurling that was
first published in [7, Chapter XVI].

Theorem 2.26 (Titchmarsh). Let µ be a distribution with ch suppµ = [a, b].
Let N(R) = N(R, 0, 2π) be the zero-counting function for µ̂. Then

lim
R→∞

N(R)

R
=
b− a
π

.

To prove Theorem 2.26, we will need to appeal to the following application
of the Riesz representation formula.
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Lemma 2.27. Let u be an imaginary-sublinear subharmonic function on C+,
and let γ be as in Lemma 2.15. Then

lim
t→∞

u(t(x+ iy))

t
= γy

in L1
loc(C+).

Proof. Fix a compact set K ⊂ C+. If u is a constant, then both sides of the
claimed equation are 0, so by linearity we may subtract the constant C that
appears in the definition of an imaginary-sublinear function from u, and so
assume without loss of generality that C = 0. Then u(t(x+ iy)) ≤ γy, so it
suffices to prove that

lim
t→∞

∫
K

u(tz)

t
− γ Im z dz = 0

to show convergence in L1(K).
By the Riesz representation formula,

u(tz)

t
− γ Im z =

∫ ∞
−∞

P (z, x)σ(x) dx+

∫
C+

G(z, w)µ(w) dw.

We now let

f(t, x) =
1

t2

∫
K

P
(
t,
x

t

)
dx.

Since t > 0 and P ≥ 0, it follows that f ≥ 0. Moreover, by Lemma 2.17,
there is a B > 0 which only depends on K such that for any x/t large enough,

f(t, x) ≤ 1

t2
sup
x∈K

P
(
t,
x

t

)
≤ B

t2(1 + |t|)2
.

Moreover, this estimate on f is trivial if we bound x/t from above; so we
can take B to be large enough that this estimate is valid for any x/t ∈ R.
Similarly, we take

g(t, w) = −1

t

∫
K

G(z, w) dw ≤ D Im z

t2(1 + |z/t|)2
.

Thus g ≥ 0, and∫
K

u(tz)

t
− γ Im z dz =

∫ ∞
−∞

f(t, x)σ(x) dx−
∫
C+

g(t, w)µ(w) dw.

30



Since we have estimated f and g, we can use (2.2) and (2.1) to apply the
dominated convergence theorem. Clearly the dominators of f and g converge
to 0 pointwise as t→∞, so the integrals against σ and µ converge to 0.

Proof of Titchmarsh’s theorem. Fix a distribution µ on R with ch suppµ =
[a, b]. By the Paley-Wiener theorem, Theorem 2.6, µ̂ is an entire function
and log |µ̂| is an imaginary-sublinear subharmonic function. Viewing log |µ̂|
as a function on C+ and taking γ as in Lemma 2.15, we have γ = b, since the
estimate in the Paley-Wiener theorem is sharp. On the other hand, viewing
log |µ̂| as a function on C−, we have γ = a. Let Z be the multiset of zeroes
of µ̂ with repetition.

Let h(t) = at for t < 0, h(t) = bt for t > 0. Then h′ is a rescaled Heaviside
function, so h′′ = (b− a)δ0. By Lemma 2.27, we have

lim
t→∞

log |µ̂(tζ)|
t

= h(Im ζ)

in L1
loc. Taking the Laplacian of both sides, we see that

lim
t→∞

2π

t

∑
z∈Z

δz/t(w) = (b− a)δ0(Imw)

in the sense of distributions.
Integrating both sides,∫

D(0,1)

lim
t→∞

2π

t

∑
z∈Z

δz/t =

∫
D(0,1)

(b− a)δ0(Imw) dw

=

∫ 1

−1

b− a dw = 2(b− a).

Rewriting the left-hand side, we have

lim
R→∞

2π

R

∫
D(0,R)

∑
z∈Z

δz = lim
R→∞

2πN(R)

R
.

Dividing both sides by 2π, we prove Titchmarsh’s theorem.
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2.5 The Schatten classes

We review the theory of operators of trace-class, which are those operators
T such that T has a well-defined trace and 1 +T has a well-defined determi-
nant. To do this, we will need the theories of compact and Hilbert-Schmidt
operators as well.

Fix a Hilbert space H. If T ∈ B(H), then T ∗T is a positive operator,
so has a unique positive square root |T | =

√
T ∗T , which we can reasonably

think of as the absolute value of T . If H is actually finite-dimensional, then
the trace of T is given by trT =

∑
j〈Tej, ej〉 for any and every orthonormal

basis (ej)j. So it is reasonable to define trT this way whenever H is sepa-
rable (hence has a countable orthonormal basis), though the series may not
converge in that case. Henceforth we will assume that H is separable.

Definition 2.28. The trace-class norm is defined by ||T ||1 = tr |T |, and the
Hilbert-Schmidt norm is defined by ||T ||22 = tr(T ∗T ). If ||T ||1 (resp. ||T ||2)
is finite, we say that T is an operator of trace class (resp. Hilbert-Schmidt
operator). The trace class is known as B1(H) and the space of Hilbert-
Schmidt operators is known as B2(H).

One can define spaces Bp(H) for any p ∈ [1,∞]; these are known as
Schatten classes . However, we will only need p = 1, 2,∞.

Letting || · ||∞ denote the usual operator norm, we observe that

||T ||∞ ≤ ||T ||1,
||TS||1 ≤ ||T ||2||S||2;

the proof is the same as their “commutative analogues” which interpolate
between `1, `2, and `∞.

We now construct a wealth of Hilbert-Schmidt operators, some of which
we will need later.

Lemma 2.29. Let k ∈ L2(R2) be the integral kernel of an operator K ∈
B(L2(R)). Then ||K||2 = ||k||2, so K ∈ B2(L2(R)).

Proof. Fix an orthonormal basis (en)n of L2(R). This determines an or-
thonormal basis (enm)nm of L2(R2) by enm(x, y) = en(x)em(y). So

||k||2 =
∑
nm

|〈k, enm〉|2.
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We therefore compute

〈k, enm〉 =

∫ ∞
−∞

∫ ∞
−∞

k(x, y)em(x)en(y) dx dy

=

∫ ∞
−∞

em(x)

∫ ∞
−∞

k(x, y)en(y) dx dy

=

∫ ∞
−∞

em(x)Ken(y) dx dy = 〈Ken, em〉.

Therefore
||k||2 =

∑
n

||Ken||2 = ||K||2.

In particular, K ∈ B2(L2(R)).

It can be shown that every Hilbert-Schmidt operator on L2(R) can be
written as an integral operator whose kernel lies in L2(R2); but we will not
need this fact.

Lemma 2.30. Let f, g ∈ L2(R) and suppose that

Ku = F−1(f̂F(gu)).

Then ||K||2 = ||f ||2||g||2, so K ∈ B2(L2(R)).

Proof. By an approximation argument, we may assume that f , g, and u are
Schwartz. Then

Ku(x) =
1

2π

∫ ∞
−∞

eiξxf̂(ξ)ĝu(ξ) dξ

=
1

2π

∫ ∞
−∞

∫ ∞
−∞

eiξ(x−y)f̂(ξ)g(y)u(y) dy dξ

=
1

2π

∫ ∞
−∞

g(y)u(y)

∫ ∞
−∞

eiξ(x−y)f̂(ξ) dξ dy

=

∫ ∞
−∞

f(x− y)g(y)u(y) dξ dy

so k(x, y) = f(x− y)g(y) is the integral kernel of K. Besides,

||k||22 =

∫ ∞
−∞

∫ ∞
−∞
|g(y)|2|f(x− y)|2 dx dy

=

∫ ∞
−∞
|g(y)|2

∫ ∞
−∞
|f(x− y)|2 dx dy = ||g||22||f ||22.

Therefore ||K||2 = ||g||2||f ||2.
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Lemma 2.31. Let χ denote the indicator function of [−1, 1] and let Imλ > 0.
Then the operator T (λ) = (−i∂ − λ)−1χ is Hilbert-Schmidt, and

||T (λ)||2 =
1√

Imλ
.

Proof. Let f̂(ξ) = (ξ − λ)−1. Then

T (λ)u = F−1(f̂F(χu)).

So ||T (λ)||2 = ||f ||2||χ||2, and ||χ||2 =
√

2. Also,

||f ||22 =
||f̂ ||22
2π

=
1

2π

∫ ∞
−∞

dξ

|ξ − λ|2
.

Up to a translation of ξ, we may assume Reλ = 0. Then

|ξ − λ|2 = |ξ|2 + |λ|2

by the Pythagorean theorem. Since |ξ|2 = ξ2 we have

||f ||22 =
1

2π

∫ ∞
−∞

dξ

ξ2 + |λ|2
=

1

2 Imλ

wherefore the claim.

An operator T of trace class can clearly be approximated by finite-rank
operators in || · ||1, and the compact operators B∞(H) are those that can be
approximated by finite-rank operators in || · ||∞. Therefore if an operator is
of trace class, then it is compact. In particular, its spectrum is countable
and its only limit point is 0 (provided that H is infinite-dimensional). So
every element of the spectrum is an eigenvalue except possibly 0. (That is,
every element of the spectrum of 1 − T is an eigenvalue except possibly 1.)
We recall that the multiplicity of a nonzero eigenvalue λ of 1− T is defined
to be the dimension of the space of vectors annihilated by (T − λ)j for some
j ≥ 0 large enough; for compact operators, the kernels of (T − λ)j stabilize
as j →∞, so the multiplicity of λ is well-defined.

We now use the fact that finite-rank operators are dense in B1(H) to
define an infinite-dimensional determinant. For the proofs in what follows,
see Dyatlov and Zworski [1, Appendix B]. Recall that if T is a finite-rank
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operator, then all but finitely many of the eigenvalues (counting multiplicity)
of A are zero, so the determinant

det(1− T ) =
∏

λ∈SpecT

1− λ

is a finite product, and therefore makes sense.

Lemma 2.32. Define a map on finite-rank operators by T 7→ det(1 − T ).
This map is continuous for the trace-class norm, so extends uniquely to a
continuous map B1(H)→ C.

Definition 2.33. Let T ∈ B1(H). The Fredholm determinant of 1 − T is
defined for finite-rank operators by det(1− T ), and for general T by Lemma
2.32.

Lemma 2.34. Let T ∈ B1(H). Then

| det(1− T )| ≤ e||T ||1 ,

and det(1−T ) = 0 if and only 1−T is not injective. If we enumerate SpecT
so that |λ0| ≥ |λ1| ≥ · · · , then

det(1− T ) =
∞∏
j=0

1− λj.

By the spectral theorem for compact operators, a compact operator T ∈
B∞(H) admits a singular value decomposition

Tu =
∞∑
n=1

ρn〈u, en〉fn

for some orthonormal sets en, fn ∈ H and singular values ρn ∈ R. Then the
assumption that T ∈ Bp(H) is equivalent to saying that (ρn)n ∈ `p (and this
makes sense for any p ∈ [1,∞], not just p = 1, 2,∞). In particular, given
f, g ∈ H, the operator

Tu = 〈u, f〉g
is a rank-1 operator (since its image is the span of g), and we can compute
its SVD by finding a ρ ∈ R such that if

Tu = ρ〈u, f̃〉g̃
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has ||f̃ ||2 = ||g̃||2 = 1. Clearly then

||T ||1 = | trT | = |ρ| = ||f ||2||g||2. (2.4)

So the following linear map is well-defined.

Definition 2.35. We define a linear map b : H ⊗H → B1(H) by

b(f ⊗ g)u = 〈u, f〉g.
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Chapter 3

Review of scattering theory

In this chapter we review potential scattering for compactly supported and
super-exponentially decreasing potentials on R. The results in Sections 3.1-
3.4 will often be used without comment in Chapter 4, and many are stated
without proof, but can reviewed in [1] and [10]. In Section 3.5 we fill in
the details of the proof of the Breit-Wigner formula outlined by Dyatlov
and Zworski in [1]; Chapter 4 is independent of this section, which relies on
Theorem 2.26.

3.1 The Schrödinger picture

In the Schrödinger picture of quantum mechanics, one wishes to solve the
Schrödinger equation

Hu = ∂tu. (3.1)

Here H is a fixed self-adjoint operator known as the Hamiltonian and a so-
lution u = u(t, x) is known as a wavefunction, especially if u(t) ∈ L2(R).
We will be interested in H = HV , where HV = D2

x + V , and V is multipli-
cation by a function known as the potential. Since HV is invariant under
time-translation, we can solve (3.1) using separation of variables, so that

u(t, x) = e−itHV u0(x).

Here u0(x) is an initial datum and e−itHV is the one-parameter family of
unitary operators defined by requiring that if HV vλ = λ2vλ, then

e−itHV vλ = e−itλ
2

vλ.
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By the spectral theorem for unbounded self-adjoint operators, or, equiva-
lently, Borel functional calculus, u0 can always be written as a direct integral
of eigenfunctions of HV , so e−itHV is well-defined and we might as well as-
sume that u0 = vλ is an eigenfunction, with eigenvalue λ2 ∈ R. The physical
interpretation of this situation is that vλ is a wave with energy λ2. The
problem of solving (3.1) then reduces to the problem of diagonalizing HV .

By definition, the resolvent operator RV (λ) = (HV − λ2)−1 is the right
inverse of the Schrödinger operator HV − λ2. The definition of RV (λ) means
that it is the linear operator such that

(HV − λ2)RV (λ)f = f

for all compactly supported f ∈ L2, assuming that such an operator in fact
exists and is unique. In particular, if λ2 is an eigenvalue of HV , then RV (λ)
cannot exist.

Viewing the resolvent RV as a function valued in B(L2
comp(R)→ L2

loc(R)),
we want to understand the relationship between the poles of the resolvent
and the scattering behavior of HV ; that is, the behavior of solutions u to the
eigenvalue equation

HV u = λ2u

at infinity, assuming that V is zero at infinity.

3.2 Analytic continuation

The trouble is that RV (λ) may not actually exist if Imλ is not too large and
V does not decay fast enough. In fact, if V is compactly supported, then RV

will admit a meromorphic continuation to all of C. However, if V is simply
super-exponentially decreasing, we may not have this luxury. So we consider
certain weighted resolvents to act as a suitable substitute.

We introduce the resolvent function, (x, y) 7→ RV (λ;x, y), defined by

RV (λ)f(x) =

∫ ∞
−∞

f(y)RV (λ;x, y) dy.

Since RV (λ) is a right inverse to HV − λ2, we can appropriately view the
resolvent function as the Green function of HV − λ2 on R. The resolvent R0

is known as the free resolvent.
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When we study the free resolvent, we are just solving the Schrödinger
equation for a free particle, so

R0(λ;x, y) =
i

2λ
eiλ|x−y|.

To see this, we just have to check

2iλ(H0 − λ2)R0(λ;x, 0) = (∆x + λ2)eiλ|x| = −λ2eiλ|x| + λ2eiλ|x|

= −2iδ0(x).

Thus R0(λ) is in fact the Green function for H0 − λ2.
Now if Imλ ≤ 0, then we have no decay in the plane waves eiλ|x−y|, so

R0(λ) does not carry L2 to itself. The spectrum of H0 = −∆ consists of R+,
so if Imλ > 0, it follows from the spectral radius theorem that

||R0(λ)||L2→L2 = sup
µ∈R+

1

|λ2 − µ|
=

1

d(R+, λ2)
. (3.2)

Therefore R0(λ) is bounded on L2 if Imλ > 0. In particular, R0 is holomor-
phic on C+.

We put
WV (λ) =

√
V R0(λ)

√
|V |.

We view WV as a weighted version of the resolvent R0(λ). We will need the
fact that WV (λ) is holomorphic in λ and trace-class.

Theorem 3.1. Suppose that V is super-exponentially decreasing. Then WV

is holomorphic as a function C \ 0 → B1(L2(R)), and has a simple pole at
0.

Before we can prove Theorem 3.1, we need some careful estimates on
WV (λ). Our proof follows [4, Lemma 3.1].

Lemma 3.2. Let L > 0, x, z ∈ (−L,L). For every λ1, λ2 ∈ C we have

R0(x, z;λ1)−R0(x, z;λ2) = (λ2
1 − λ2

2)

∫ L

−L
R0(x, y;λ1)R0(y, z;λ2) dz

+
i

4
eL+i(λ1+λ2)

(
1

λ1

− 1

λ2

)
(e−i(λ1x+λ2z) + ei(λ1x+λ2z)).
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Proof. Adding and subtracting ∆y,

(λ2
1−λ2

2)R0(x, y;λ1)R0(y, z;λ2) = R0(x, y;λ1)(∆y+λ2
1−∆y−λ2

2)R0(y, z;λ2).

By the definition of the Green function,∫ L

−L
R0(x, y;λ1)(−∆y − λ2

2)R0(y, z;λ2) dy = R0(x, z;λ1).

Therefore

(λ2
1 − λ2

2)

∫ L

−L
R0(x, y;λ1)R0(y, z;λ2) dy = R0(x, z;λ1)

−
∫ L

−L
R0(x, y;λ1)(∆y − λ2

1)R0(y, z;λ2) dy.

Integrating by parts,

−
∫ L

−L
R0(x, y;λ1)∆yR0(y, z;λ2) dy = −

∫ L

−L
∂yR0(x, y;λ1)∂yR0(y, z;λ2) dy

+ [R0(x, y;λ1)∂yR0(y, z;λ2)]Ly=−L.

We observe that

R0(x, y;λ1)∂yR0(y, z;λ2) =
i

4λ1

ei(λ1|x−y|+λ2|y−z|)
y − z
|y − z|

from which it follows that

[R0(x, y;λ1)∂yR0(y, z;λ2)]Ly=−L =
i

4λ1

eiλ1L(e−i(λ1x+λ2z) + ei(λ1x+λ2z)).

Integrating by parts again,

−
∫ L

−L
∂yR0(x, y;λ1)∂yR0(y, z;λ2) dy =

∫ L

−L
∆yR0(x, y;λ1)R0(y, z;λ2) dy

− [∂yR0(x, y;λ1)R0(y, z;λ2)]Ly=−L

= R0(x, z;λ2)

− i

4λ2

eiλ1L(e−i(λ1x+λ2z) + ei(λ1x+λ2z)).

Putting it all together, the lemma follows.
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Let TL = Sχ[−L,L]
and let T = T1. Then, if f decays fast enough, it makes

sense to define

F (λ1, λ2)f(x) =
i

4
ei(λ1+λ2)

(
1

λ1

− 1

λ2

)
b(χe−iλ1x ⊗ χe−iλ2x + χeiλ1x ⊗ eiλ2x),

where b is the operator L2(R) ⊗ L2(R) → B1(L2(R)) given by Definition
2.35. Using (2.4) we can estimate, for λ ∈ R,

||F (λ, i|λ|)||1 ≤ e−i|λ|
∣∣∣∣1λ − 1

i|λ|

∣∣∣∣ (||χ||2||χe|λ|x||2 + ||χ||2||χe−|λ|x||2)

whence
||F (λ, i|λ|)||1 = O(|λ|−1). (3.3)

On the other hand, if λ /∈ R, we have

||F (λ,−λ)||1 ≤ Ce2| Imλ|| Imλ|−1||χ||2||χe2x Imλ||2

whence

||F (λ,−λ)||1 = O

(
e4| Imλ|

| Imλ|

)
. (3.4)

By the above lemma, we have

T (λ1)− T (λ2) = (λ2
1 − λ2

2)T (λ1)T (λ2) + F (λ1, λ2). (3.5)

Lemma 3.3. Let λ 6= 0. Then T (λ) is trace-class. If Imλ > 0, then
||T (λ)||1 ≤ (Imλ)−1. If λ ∈ R, then ||T (λ)||1 = O(1 + |λ|−1). If Imλ < 0,
then

||T (λ)||1 = O

(
e4| Imλ|

− Imλ

)
.

Proof. If Imλ > 0, we have the factorization

T (λ) = χ(−∆− λ2)−1χ = χ(−i∂ + λ)−1(−i∂ − λ)−1χ

= −((−i∂ − λ)−1χ)∗((−i∂ − λ)−1χ).

Since taking adjoints clearly preserves the Hilbert-Schmidt norm, we have

||T (λ)||1 ≤ ||(−i∂ − λ)−1χ||22 =
1

Imλ
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by Lemma 2.31.
If Imλ = 0, we use the fact that

||T (λ)||2 ≤ ||(−∆− λ2)−1||2 =
1

2π

∫ ∞
−∞

dξ

ξ2 + λ2
=

1

2|λ|
,

as in the proof of Lemma 2.31. By (3.5) and (3.3),

||T (λ)||1 ≤ ||T (i|λ|)||1 + (λ2 + |λ|2)||T (λ)||2||T (i|λ|)||1 + ||F (λ, i|λ|)||1

≤ 1

|λ|
+O

(
λ2 + |λ|2

|λ|2

)
+O

(
1

|λ|

)
= O(1 + |λ|−1).

If Imλ < 0, we notice that by (3.5),

T (λ) = T (−λ) + (λ2 − (−1)2λ2)T (λ)T (−λ) + F (λ,−λ)

= T (−λ) + F (λ1, λ2).

Using our estimate for Imλ > 0 and (3.4),

||T (λ)||1 ≤ ||T (−λ)||1 + ||F (λ,−λ)||1 = O

(
e4| Imλ|

− Imλ

)
,

as promised.

Lemma 3.4. Suppose that Imλ < 0. Let χL denote the indicator function
of [−L,L]. Then

||TL(λ)||1 = O

(
Le4L| Imλ|

|λ|

)
.

Proof. If UL denotes the unitary dilation

ULu(x) = L−1/2u(xL−1)

then it is easy to see that

TL(λ)UL = L2ULT (Lλ).

Since conjugation by a unitary operator preserves trace,

||TL(λ)||1 = L2||T (Lλ)||2 ≤ CL2e4L| Imλ|L| Imλ|

which proves the lemma.
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Lemma 3.5. Let N > 0. Suppose that
√
V (x) = O(e−N |x|), λ 6= 0, and

| Imλ| < N/4. Then

lim
L→∞

√
V TL(λ)

√
|V | = WV (λ)

in the topology of B1(L2(R)).

Proof. Up to a rescaling we may assume that |
√
V (x)| ≤ e−N |x|. Let w(x) =

e−LN for |x| ∈ (L− 1, L], so w dominates
√
V . Therefore

||
√
V TL(λ)

√
|V | −WV (λ)||1 = ||

√
V (χLR0(λ)χL)

√
|V |||1

≤ ||w(χLR0(λ)χL −R0(λ))w||1
= ||wTL(λ)w − Sw2(λ)||1

so it suffices to prove the lemma when
√
V = w. Moreover,

||w(χLR0(λ)χL −R0(λ))w||1 = ||w(χLR0(λ)χL −R0(λ)χL

+R0(λ)χL −R0(λ))w||1
≤ ||w((1− χL)R0(λ)χL)w||1

+ ||w(R0(λ)(1− χL))w||1
≤ ||w((1− χL)R0(λ))w||1

+ ||w(R0(λ)(1− χL))w||1
≤ 2||wR0(λ)(1− χL)w||1

since ||χLw||2 ≤ ||w||2 and ||wR0(λ)(1− χL)w||1 = ||w(1− χL)R0(λ)w||1 by
adjointness.

Let a1 = e−N , aL = e−NL − e−N(L−1). Then w =
∑

L aLχL, and in
particular

∑
L aL = 1, so

wR0(λ)(1− χL)w =
∑
`

∞∑
m=L

a`χ`R0(λ)amχm
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whence

||wR0(λ)(1− χL)w||1 ≤
∑
`

∞∑
m=L

a`am||χ`R0(λ)χm||

≤
∞∑

m=L

am

( m∑
`=1

a`||χmR0(λ)χm||1

+
∞∑

`=m+1

a`||χ`R0(λ)χ`||1
)

=
∞∑

m=L

am

(
m∑
`=1

a`||Tm(λ)||1 +
∞∑

`=m+1

a`||T`(λ)||1

)
.

We now apply Lemma 3.4 and the fact that
∑

` a` = 1 (and the sum converges
monotonically) to see that

∞∑
m=L

m∑
`=1

ama`||Tm(λ)||1 ≤
∞∑

m=L

am||Tm(λ)||1

= O

(
∞∑

m=L

me−m(N−4| Imλ|)

)
.

Similarly,

∞∑
m=L

∞∑
`=m+1

a`||T`(λ)||1 = O

(
∞∑
`=L

`e−`(N−4| Imλ|)

)
.

Let δ = N − 4| Imλ| > 0. Then

||
√
V TL(λ)

√
|V | −WV (λ)||1 = O(||wR0(λ)(1− χL)w||1)

= O

(
∞∑
`=L

`e−δ`

)
= o

(
1

δL

)
and the theorem holds taking L→∞.

Proof of Theorem 3.1. Holomorphy follows from that of R0. Since V is
super-exponentially decreasing, so is

√
V . For every λ, we can find a N

large enough that Lemma 3.5 applies.
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We now observe that if V is compactly supported, then RV extends to a
meromorphic family of operators. To accomplish this, we first extend R0 to
a family of bounded operators on L2

comp. We recall that for an operator T on
L2
comp is bounded if, for every L ∈ N and every test function ρ ∈ C∞comp(R)

such that supp ρ ⊆ [−L,L], the operator ρTρ is bounded on L2.

Lemma 3.6. R0 extends to a meromorphic family of operators on L2
comp.

Proof. We must show that given L, ρ as above and λ ∈ C−, ρR0(λ)ρ ∈ B(L2).
In fact, ∫ ∞

−∞
|ρ(x)ρ(y)R0(λ;x, y)| dx ≤ C

|λ|

∫ ∞
−∞
|ρ(x)ρ(y)|e− Imλ|x−y|

=
Cρ
|λ|
e2L Imλ

so, by Schur’s criterion,

||ρR0(λ)ρ||L2→L2 ≤ Cρ
e2L Imλ

|λ|
.

Lemma 3.7. Let ρ ∈ C∞comp(R) be such that ρV = V . Then

(1 + V R0(λ))−1ρ = ρ(1 + V R0(λ)ρ)−1.

Proof. We have
RV (λ) = R0(λ)(1 + V R0(λ))−1.

Suppose ρ is supported on [−R,R]. Then

supp(1 + V R0(λ))ρ ⊆ [−R,R]

so it follows that

ρ(1 + V R0(λ))ρ = (1 + V R0(λ))ρ.

Inverting the operator 1 + V R0(λ), the theorem follows.

Theorem 3.8. If V is compactly supported, then the family of operators

RV : L2
comp → L2

loc

is meromorphic on C.
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Proof. By the definition of the free resolvent, we have

(HV − λ2)RV (λ) = 1 + V R0(λ).

If Imλ is very large, then ||V R0(λ)||L2→L2 is very small, so the formal Neu-
mann series computation

(1 + V R0(λ))−1 =
∞∑
k=0

(−V R0(λ))k

is valid. Thus (1 + V R0(λ))−1 is a holomorphic family of operators on L2,
for Imλ sufficiently large.

With ρ a cutoff such that ρV = V , V R0(λ)ρ = V ρR0(λ)ρ is a mero-
morphic family of compact operators L2 → H2

comp, so 1 + V R0(λ)ρ is a
meromorphic family of Fredholm operators. It follows that

RV (λ)ρ = R0(λ)ρ(1 + V R0(λ)ρ)−1

is a meromorphic family of operators L2 → L2
loc. Taking R→∞, the theorem

follows.

3.3 The scattering matrix

In what follows, we will assume that V is compactly supported, so that we
may define a matrix S(λ) known as the “scattering matrix,” which encodes
how waves are distorted when they pass through the “barrier” ch suppV .

Since we have assumed that V and f have compact support, if |x| is large,
then

(H0 − λ2)RV (λ)f(x) = 0.

So if we let ψ = RV (λ)f , it follows from some calculus that we can find
constants A+, B− such that for all x large enough,

ψ(x) = A+e
iλx +B−e

−iλx.

Similarly, we can find A−, B+ such that for every x with −x large enough,

ψ(x) = A−e
−iλx +B+ − eiλx.

In case λ > 0, we can view waves of the form Ceiλx as “moving to the right
with frequency λ” and waves of the form Ce−iλx as “moving to the left with
frequency λ.” Of course, this distinction makes sense for any fixed λ ∈ C,
even if λ is not a positive real number. So we make the following definition.
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Definition 3.9. An incoming wave is a linear combination of waves of the
form eiλx for x � 0 and e−iλx for x � 0. An outgoing wave is a linear
combination of waves of the form e−iλx for x� 0 and eiλx for x� 0.

We can use the formalism of incoming and outgoing waves to show that
RV has no nonzero real poles.

Theorem 3.10. Let λ ∈ R and suppose λ 6= 0. Then λ is not a pole of RV .

Lemma 3.11. Suppose that RV has a pole at λ0 6= 0. Suppose that

RV (λ) =
PN

(λ− λ0)N
+ · · ·+ P1

λ− λ0

+Q(λ)

is the Laurent expansion of RV at λ0 (so Q is holomorphic). Then for every
f ∈ L2

comp, u = PNf is an outgoing solution of the eigenvalue equation
HV u = λ2

0u.

Proof. We have

(λ− λ0)N(HV − λ2)RV (λ)f = (λ− λ0)N(HV − λ2)(
u

(λ− λ0)N
+O((λ− λ0)1−Nf)

)
= (HV − λ2)u+O((λ− λ0)f)

and taking λ → λ0 we see that (HV − λ2
0)u = 0. Therefore u solves the

eigenvalue equation. To see that u is outgoing, choose ρ ∈ C∞comp(R) such
that ρV = V . Then

R0(λ)ρ(1 + V R0(λ)ρ)−1 = RV (λ)ρ

so (1 + V R0(λ)ρ)−1 is meromorphic with a pole of order ≤ N at λ0. Write

(1 + V R0(λ)ρ)−1 =
P̃N

(λ− λ0)N
+ · · ·+ P̃1

λ− λ0

+ Q̃(λ)

for the Laurent expansion of (1 + V R0(λ)ρ)−1 at λ0. Then

PN(ρ(L2(R))) = R0(λ)ρP̃N(L2(R)) ⊆ R0(λ)(L2
comp(R)).

Since ρ was arbitrary, it follows that u ∈ R0(λ)(L2
comp(R)). Since R0 is the

outgoing free resolvent, u is outgoing.
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Lemma 3.12. Let λ ∈ R and suppose λ 6= 0. Suppose HV u = λ2u. If we
expand u as

u(x) =

{
A+e

iλx +B−e
−iλx, x� 0,

A−e
iλx +B+e

−iλx, x� 0,

then |A+|2 + |B+|2 = |A−|2 + |B−|2.

Proof. Since λ ∈ R, HV −λ2 is a real operator, so (HV −λ2)u = 0. Therefore
the Wronskian ∣∣∣∣u u

u′ u′

∣∣∣∣ = −2iλ

{
|A+|2 + |B−|2, x� 0,

|A−|2 + |B+|2, x� 0,

is constant so |A+|2 + |B−|2 = |A−|2 + |B+|2.

We will need the following lemma to show that certain solutions are
unique. It guarantees that a wave’s transmission cannot be completely inter-
cepted by a bounded potential, and so must scatter. Note that this stands
in contrast to, say, the infinite potential well that is taught in introductory
quantum mechanics class.

Lemma 3.13. Let u ∈ L∞(R), W ∈ L∞(R), and suppu ⊆ [0,∞). If
HWu = 0, then u = 0.

Proof. Let h ∈ (0, 1) and v(x) = e−x/hu(x). Since u is supported in the right
half-ray, it follows that v ∈ L∞(R) and that v is rapidly decaying. Therefore
v ∈ L2(R). For ξ ∈ R, |i− hξ|2 ≥ 1. Therefore

||v||2L2(R) = ||v̂||2L2(R) ≤
∫ ∞
−∞
|(hξ − i)2v̂(ξ)|2 dξ.

The inverse Fourier transform of (hξ − i)2 = h2ξ2 − 2ihξ − 1 is

h2D2
x − 2ihDx − 1 = h2e−x/hD2ex/h.

So by the Plancherel formula,

||v||L2(R) ≤
∫ ∞
−∞
|e−x/h(hDx)

2u(x)|2 dx

= h2

∫ ∞
−∞
|e−x/hW (x)u(x)|2 dx

≤ h2||W ||L∞(R)||v||L2(R).

Taking h→ 0, we see that v = 0, but e−x/h 6= 0, so u = 0.
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Corollary 3.14. Let λ ∈ R and suppose λ 6= 0. If HV u = λ2u, then u is
not outgoing.

Proof. Let A±, B± be as in Lemma 3.12. If u is outgoing and not compactly
supported, then |A+|2 + |B−|2 > 0 while |A−|2 + |B+|2 = 0. Therefore u is
compactly supported, but after translating the support of u, we may assume
that suppu ⊆ [0,∞). But then Lemma 3.13 implies that u = 0.

Proof of Theorem 3.10. Suppose that λ is a pole. By Lemma 3.11, there is
an outgoing function u such that HV u = λ2u. This contradicts Corollary
3.14.

We now are in a position to construct the eigenfunctions for the contin-
uous spectrum of HV ; namely, for x ∈ R, λ ∈ R, λ 6= 0,

e±(x, λ) = e±iλx −RV (λ)(V (x)e±iλx).

By Theorem 3.10, λ is not a pole of RV , so this definition makes sense.

Lemma 3.15. The function e±(·, λ) is the unique eigenfunction of HV with
eigenvalue λ2 which is equal to e±iλx modulo outgoing terms.

Proof. Clearly e± is an eigenfunction of HV with eigenvalue λ2. If ρV = V ,
then

RV (λ)ρ = R0(λ)ρ(1 + V R0(λ)ρ)−1.

So

RV (λ)(V ei±x) = RV (λ)(ρV ei±x) = R0(λ)ρ(1 + V R0(λ)ρ)−1V ei±x

which lies in the image of the outgoing resolvent R0(λ), so is outgoing. There-
fore e± is equal to e±iλx modulo outgoing terms.

Assume that ẽ±(x, λ) = e±iλx+g(x, λ) is also an eigenfunction with g(·, λ)
outgoing. Then

ẽ±(x, λ)− e±(x, λ) = g(x, λ)−RV (λ)(V (x)e±iλx)

is also an eigenfunction, which is outgoing. Then, by Corollary 3.14, g(x, λ)−
RV (λ)(V (x)e±iλx) = 0.
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In the trivial case V = 0, we have e±(x, λ) = e±iλx. In this case, the
Wronskian W (x, λ) of e±(x, λ) is given by−2iλ. We interpret this as meaning
that the entirety of an incoming wave is transmitted through ch suppV = ∅.
But even if V is nonzero, HV does not have a first-order term, so it follows
from Abel’s Wronskian formula that the function W (·, λ) is a constant.

Definition 3.16. The transmission coefficient T is defined by

T (λ) =
iW (λ)

2λ
.

We now define

φ±(x, λ) =
e±(x,∓λ)

T (±λ)
.

Lemma 3.17. For every λ ∈ R, the φ± are functions on R such that (D2
x +

V − λ2)φ± = 0 and such that φ±(x, λ) = e−iλx for ±x large enough.

Proof. To show that the φ± are functions, we must show that they do not
have poles.

First we rule out the possibility that T (±λ) = 0. If λ 6= 0, then the e±(λ)
are linearly independent, so T (λ) 6= 0.

On the other hand, if the e±(0) are linearly dependent, then there is an
m ∈ N such that the φ± have a pole of order of m at 0. So

φ̃±(x) = lim
λ→0

λmφ±(x, λ)

is a holomorphic function on a ball close to 0, and φ̃± ∈ ker φ̃±. Since, for
±x large enough, φ̃±(x) = 0, we conclude that φ̃± = φ±, a contradiction. So
the e±(0) are linearly independent, and φ± is defined on all of R. Clearly we
have (D2

x + V − λ2)φ± = 0, so we are done.

We now put

w±(x, y) =
1

2π

∫ ∞
−∞

φ±(x, λ)eiλy dλ

By Lemma 3.17, w± solves the equation

(D2
x + V (x))w±(x, y) = D2

y(x, y),

w±(x, y) = δ(x− y) ±x� 0.
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Rewriting the first equation as

(D2
x −D2

y)w±(x, y) = V (x)w±(x, y)

we see that the w± are the unique solutions to these equations, since the
operator D2

x − D2
y conserves an energy functional. See Evans [2, §2.4.3] for

details.
We recall that a distribution u is real if for every real test function ϕ,∫
uϕ is real.

Lemma 3.18. Let [a, b] = ch suppV . Then there are unique distributions
X, Y such that if x� 0,

∂yw−(x, y) = X(y − x) + Y (x+ y),

such that suppX ⊆ [−2(b−a), 0] and suppY ⊆ [2a, 2b]. Besides, 0 ∈ suppX
and X, Y are real.

Proof. For x� 0,
(D2

x −D2
y)∂yw−(x, y) = 0

so ∂yw−(x, y) solves the wave equation with initial data V and forcing data
δ0 where x is the time variable and y is the space variable. The lemma then
follows from the d’Alembertian formula and causality properties of the wave
equation, c.f. [2, §2.4.1a], where x = a is the inital-time slice of R2, the
future is x > a, and the distributions X, Y must have support contained in
an interval whose length is at most 2| ch suppV |. Moreover, since V and δ0

are real, so must be ∂yw−(x, y), and the d’Alembertian formula then implies
that X, Y are real.

We will later show that −2(b− a) ∈ suppX, so that

ch suppX = [−2| ch suppV |, 0].

The scattering matrix maps the incoming coefficients A−, B− to the out-
going coefficients A+, B+. Since X is a compactly supported distribution,
the Paley-Wiener theorem, Theorem 2.6, implies that the Fourier transform
X̂ is an entire function, and in particular 1/X̂ is a meromorphic function.

Definition 3.19. The scattering matrix is the operator S(λ) : C2 → C2

defined by

S(λ)

[
A−
B−

]
=

[
A+

B+

]
.
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If J =

[
1

1

]
, then

S(−λ) = JS(λ)−1J.

This follows immediately from the definition of the coefficients A±, B±.

Theorem 3.20. The scattering matrix S is a meromorphic family of unitary
operators on C such that

S(λ) =
1

X̂(λ)

[
iλ Ŷ (λ)

Ŷ (−λ) iλ

]
. (3.6)

If λ ∈ C+ is a pole of S, then λ2 is an eigenvalue of HV . Moreover,

X̂(λ)X̂(−λ) = λ2 + Ŷ (λ)Ŷ (−λ), (3.7)

and

detS(λ) =
X̂(−λ)

X̂(λ)
. (3.8)

Proof. We consider the decompositions

φ−(x, λ) =

{
A(λ)eiλx +B(λ)e−iλx, x� 0

e−iλx, x� 0,

φ+(x, λ) =

{
e−iλx, x� 0,

C(λ)eiλx +D(λ)e−iλx, x� 0.

Here if y = A,B,C,D then y(λ) = y(−λ). In addition, |A(λ)|2 +1 = |B(λ)|2
and |C(λ)|2 + 1 = |D(λ)|2. Thus

A(λ)A(−λ) + 1 = B(λ)B(−λ) (3.9)

and similarly for C,D.
From the definition of S, we have

S(λ) =
1

B(λ)

[
−A(λ)
C(λ)

A(λ)
B(λ)D(λ)−1

C(λ)
1

]
. (3.10)

From Lemma 3.18, if λ ∈ R, then

iλφ−(x, λ) = X̂(λ)φ+(x, λ) + Ŷ (λ)φ+(x,−λ).
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For x� 0,

iλ(A(λ)eiλx +B(λ)e−iλx) = X̂(λ)e−iλx + Ŷ (−λ)eiλx

and since the e±iλx are linearly independent, iλA(λ) = Ŷ (λ) and iλB(λ) =
X̂(λ). Similarly, −iλC(λ) = Ŷ (λ) and −iλD(λ) = Ŷ (λ). Plugging these
formulae into (3.10), we establish the formula (3.6). Moreover, (3.9) implies
(3.7). Plugging (3.7) into (3.6), we conclude that S(λ) is unitary. Since X̂, Ŷ
are entire functions, S is meromorphic. Since S is unitary, (3.8) follows from
(3.6).

Finally, if S has a pole at λ0, then B(λ0) = 0, so if x� 0,

φ−(x, λ0) = A(λ)eiλx.

Therefore φ−(λ0) has only outgoing terms away from ch suppV , and if Imλ0 >
0 this implies that

HV φ− = λ2
0φ−,

so λ2
0 is an eigenvalue of HV .

3.4 Scattering resonances

In what follows, we let Γλ denote a sufficiently small (counterclockwise-
oriented) circle centered on λ.

Definition 3.21. Let V be a compactly supported potential. A scattering
resonance is a pole of the resolvent family RV . If λ0 is a scattering resonance,
its multiplicity mR(λ0) is defined to be the rank of the operator

1

2πi

∫
Γλ0

RV (λ) dλ.

In fact, if λ0 is a scattering resonance, then for any λ close to λ0, we can
express RV (λ) as a Laurent series

RV (λ) = Q(λ− λ0) +
N∑
j=1

Pj
(λ− λ0)j
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for some holomorphic family of operators Q defined on a small neighborhood
of 0 and some operators P1, . . . , PN . The operators P1, . . . , PN are of finite
rank by construction of RV (λ). Applying the Cauchy-Goursat theorem,∫

Γλ0

Q(λ− λ0) dλ = 0

so the multiplicity is entirely determined by the principal part RV (λ)−Q(λ−
λ0).

The trouble is that the above definition does not make sense ifRV does not
admit a meromorphic continuation to C. To justify a more general definition,
note that if V is compactly supported, the following are equivalent for each
λ ∈ C \ 0:

1. λ is a resonance.

2. λ is a pole of RV .

3. λ is a pole of
√
V RV

√
|V |.

Moreover, we have
RV (λ) = R0(λ)(1 + V RV (λ)),

and it follows that
√
V RV (λ)

√
|V | = WV (λ)(1−

√
V RV (λ)

√
|V |),

which can be rewritten as

WV (λ) = (1 +WV (λ))
√
V RV (λ)

√
|V |.

By Theorem 3.1, WV (λ) exists, so we have

(1 +WV (λ))−1WV (λ) =
√
V RV (λ)

√
|V | =∞.

This only makes sense if 1 + WV (λ) is singular, and since WV (λ) is in the
trace class, this means that det(1 +WV (λ)) = 0.

Conversely, suppose that det(1 + WV (λ)) = 0. If RV is meromorphic
on some open neighborhood of λ, then λ is a pole of RV , even if V is
not compactly supported. In fact, λ is a pole of (1 + WV (λ))−1, hence of√
V RV (λ)

√
|V |. Since WV is holomorphic near λ, λ must be a pole of RV (λ).

We can therefore easily extend the definition of resonance to super-exponentially
decreasing potentials.
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Definition 3.22. Let

D(λ) = det(1 +WV (λ)).

A scattering resonance of V is a zero of D. The multiplicity mR(λ) of a
resonance λ is the order of vanishing of D. We let ResV note the multiset
of resonances of V , counted by multiplicity.

Recall that the Breit-Wigner series is by definition the sum

B(V ) = −
∑

λ∈ResV

Imλ

|λ|2
.

One might fear that B(V ) conditionally converges, because a priori there
may be infinitely many resonances in both C+ and C−. However, this is not
the case.

Lemma 3.23. The set ResV ∩C+ is finite.

Proof. Let Imλ ≥ 0. We only have to prove that

||WV (λ)||L2→L2 ≤ ||V ||L
1

2|λ|
(3.11)

because then if |λ| > 2/||V ||L1 , we have SpecWV (λ) ⊂ D(0, 1) and hence
D(λ) 6= 0, so λ is not a scattering resonance. Thus every scattering resonance
in C+ is in the compact disc D(0, 2/||V ||L1), but ResV is discrete since it is
the set of zeroes of the holomorphic function D, so ResV ∩C+ is finite.

We have eiλ|x−y| ≤ 1, so the Cauchy-Schwarz inequality implies

||WV (λ)u||2L2 =

∫ ∞
−∞

∣∣∣∣∣
∫ ∞
−∞

i
√
V (x)

2λ
eiλ|x−y|u(y)

√
|V (y)| dy

∣∣∣∣∣
2

dx

≤ 1

4|λ|2

∫ ∞
−∞
|V (x)|

∣∣∣〈u,√V 〉∣∣∣2 dx

=
||u||2L2||V ||2L1

4|λ|2

which verifies (3.11).

55



3.5 The Breit-Wigner formula

We put mS(λ0) for the trace of the operator

− 1

2πi

∫
Γλ0

S ′(λ)S(λ)∗ dλ.

This satisfies the equation mS(λ) = mR(λ) −mR(−λ). (For a proof, see [1,
Theorem 2.14].)

Therefore we are interested in the matrix S ′(λ)S(λ)∗, which can reason-
ably be thought of as the log-derivative of S, since we have the identity1

(log detS)′ = tr(S ′S∗). (3.12)

The Breit-Wigner approximation gives a formula for the trace of S ′(λ)S(λ)∗

in terms of the support of V and a sum over resonances. Since P is an in-
finite set in general, one cannot hope to compute trS ′(λ)S(λ)∗ exactly, but
the approximation is suitable enough.

Theorem 3.24 (Breit-Wigner approximation). For every λ0 ∈ R,

1

2πi
trS ′(λ0)S(λ0)∗ = − 1

π
| ch suppV | − 1

π

∑
λ∈ResV \0

Imλ

|λ− λ0|2
.

To begin the proof of Theorem 3.24, we combine (3.12) with (3.8), to see
that

− trS ′(λ)S(λ)∗ =
X̂ ′(−λ)

X̂(−λ)
+
X̂ ′(λ)

X̂(λ)
. (3.13)

We therefore expect scattering resonances to be closely related to X̂. To see
this in greater detail, let

h(x− y)± =

{
1 ±x > ±y
0 else

be the Heaviside functions.

1For all unproven matrix calculus identities, see [9] or similar.
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Lemma 3.25. Let P (x, ∂x) = a∂2
x + b(x) be a differential operator, where a

is constant and b ∈ L∞. Let E be the Green function of P , so that

P (x, ∂x)E(x, y) = δ(x− y).

For any two linearly independent solutions u1, u2 ∈ kerP , if W = u1u
′
2−u2u

′
1

is the Wronskian of u1, u2, then

E(x, y) =
h(x− y)+u1(x)u2(y) + h(x− y)−u1(y)u2(x)

aW
.

Proof. E(·, y) must be C2 away from y, and PE must be supported on the
diagonal D, so

E(x, y) =

{
f1(y)u1(x) x < y

f2(y)u2(x) x > y

for some functions f1, f2. Moreover, E(·, y) must be C1, so that PE can be
a distribution of order 1. On the other hand, for any ε,∫ y+ε

y−ε
a∂2

xE(x, y) + b(x)E(x, y) dx =

∫ y+ε

y−ε
δ(x− y) dx

= 1.

Taking ε→ 0 and using the fact that bE ∈ L∞, we see that

lim
ε→0

∫ y+ε

y−ε
a∂2

xE(x, y) dx = 1

and so ∂xE must jump by 1/a along D while E is continuous there. Therefore
f1(y)u1(y) = f2(y)u2(y) and a(f1(y)u′1(y)−f2(y)u′2(y)) = 1. Solving for f1, f2

we have f1 = u2/aW and f2 = u1/aW , as desired.

Lemma 3.26. Let λ0 ∈ C \ 0. Then mR(λ0) is the order of vanishing of λ0

for X̂.

Proof. By Lemma 3.25 on RV (λ) with u1 = φ+(·,−λ) and u2 = φ−(·,−λ),
we see that

RV (λ;x, y) =
φ+(x,−λ)φ−(y,−λ)h(x− y)+ + φ+(y,−λ)φ−(x,−λ)h(x− y)−

2X̂(λ)
.
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On the other hand, since

1

2π
∂y

∫ ∞
−∞

φ−(x, λ)eiλy dλ = X(y − x) + Y (y + x),

it follows that

iλφ−(x, λ) = X̂(λ)φ+(x, λ) + Ŷ (λ)φ+(x,−λ).

Therefore mR(λ0) is the rank of the residue R at λ0 of the function

λ 7→ Ŷ (λ)

2iλX̂(λ)
φ+(·,−λ)⊗ φ+(·, λ)

where ⊗ is defined by Definition 2.35.
If k + 1 is the order of vanishing of λ0 for X̂, then by the Leibniz rule,

there are nonzero scalars c(j, k`) such that

R =
∂kλŶ (λ)(λ)φ+(·,−λ)⊗ φ+(·, λ)

2k!i

∣∣∣∣
λ=λ0

=
k∑
`=0

∂`λφ+(·, λ)⊗
k−`−j∑
j=0

c(j, `)∂k−jλ

Ŷ (λ)

λ
∂jλφ+(·,−λ)

∣∣∣∣
λ=λ0

.

The functions
∂jλφ+(x,−λ) = (ix)jeiλx

if x is large enough, so are linearly independent in x if λ is held constant.
Since Ŷ (λ0) 6= 0 by (3.7),

∂k−`−jλ

Ŷ (λ)

λ

∣∣∣∣
λ=λ0

6= 0,

so it can be absorbed into the scalars c(j, `, Y, λ). Thus

R =
∑
j+`≤k

c(j, `, Y, λ)∂`λφ+(·,−λ)⊗ ∂jλφ+(·,−λ)

which has rank k + 1.

Since we are now interested in the zeroes of X̂, we must also be interested
in ch suppX, by Titchmarsh’s theorem.
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Lemma 3.27. Let [a, b] = ch suppV . Then ch suppX = [−2(b− a), 0].

Proof. After a change of coordinates we may assume a = 0 and b = | ch suppV |.
Recall Lemma 3.18. We know that ch suppX ⊆ [−2(b − a), 0] and 0 ∈
ch suppX. If the claim does not hold, there is a c < 2b such that such that
ch suppX = [c, 0], and by Titchmarsh’s theorem, Theorem 2.26, the den-
sity of zeroes of X̂ is c/π. It follows by (3.7) that the density of zeroes of
Ĝ(λ) = Ŷ (λ)Ŷ (−λ) + λ2 is 2λ/π. Now, if R is the operator Rf(x) = f(−x),
then G = (Y ∗RY )− δ′′. Moreover,

ch suppG = {x+ y : x ∈ ch suppY, y ∈ ch suppRY }
= {x− y : x, y ∈ ch suppY }

and | ch suppG| = 2c. So if ch suppY = [0, 2b], we would have 4b > 2c,
contradicting that c < 2b. Therefore ch suppY ⊂ [0, 2b].

Let d = sup suppY and suppose that d < 2b. Then

−∂yw+(x, y) = X(x− y) + Y (x+ y).

Let E+(x, y) be an upward cone from (x, y), and suppose d/2 < x < y. Then
∂yw+ vanishes on E(x, y)+ ∩ {(x′, y′) : y′ > 2b}, so by causality properties of
the wave equation, ∂yw+ = 0 if d/2 < x < y. Therefore w+ only depends on
x in that region, so w+(x, y) = 0 if d/2 < x < y. Therefore δ(x− y)V (x) = 0
there, so if y > d/2 then V (y) = 0. But this implies that b /∈ ch suppV ,
which is impossible.

Therefore 2b ∈ ch suppY . A similar argument with w− implies that
0 ∈ ch suppY , so ch suppY ⊂ ch suppY , which is absurd.

We now recall the definition of a Cauchy principal value of an infinite
product. If (zn)n is a sequence of complex numbers such that zn → 1, then

p.v.
∏
n

zn = lim
ε→0

∏
|zn−1|>ε

zn,

if the limit on the right-hand side does in fact exist. The factors on the right-
hand are finite products since (zn) does not have any accumulation points on
C \D(1, ε). If the absolutely convergent infinite product

∏
n zn exists, then

it is equal to its Cauchy principal value. The Cauchy principal value of an
infinite sum is defined similarly.
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Proof of Theorem 3.24. By Theorem 2.13 and Lemma 3.26,

X̂(λ0)

X̂(0)
= ei| ch suppV |λ0p.v.

∏
X̂(λ)=0
λ 6=0

1− λ0

λ
.

Taking logarithms and using Lemma 3.272 and the argument principle,

i log

(
X̂(λ0)

X̂(0)

)
= −| ch suppV |λ0 + ip.v.

∑
λ∈ResV \0

log

(
1− λ0

λ

)
.

Therefore, after differentiating,

1

πi

X̂ ′(λ0)

X̂(λ0)
= − 1

π
| ch suppV |+ 1

π
p.v.

∑
λ∈ResV \0

i

λ0 − λ
.

Recall that X was a real distribution, so if λ ∈ R, then

X̂(λ) =

∫ ∞
−∞

X(s)eisλ ds = X̂(−λ).

Therefore
X̂(λ) = X̂(−λ), (3.14)

and ∂X̂(−λ) = 0, so (3.14) is valid for any λ ∈ C, by analytic continuation.
From (3.13) and (3.14), it follows that, for λ0 ∈ R,

1

2πi
tr(S ′(λ0)S∗(λ0)) = − 1

π
| ch suppV |+ 1

π
p.v.

∑
λ∈ResV \0

i

λ0 − λ
. (3.15)

Each of the individual summands on the right-hand side are finite, since
Lemma 3.10 implies that λ0 /∈ ResV \ 0.

Lemma 3.27 and (3.14) together imply that ResV is closed under the
Z/2-action Φ(λ) = −λ. We use this fact to replace the Cauchy principal
value in (3.15) with an absolutely convergent series. Since Φ preserves | · |,

2It is this step which required Theorem 2.26, and its lengthy proof.
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we may group up terms in the same orbit of Φ, to conclude that

1

2πi
tr(S ′(λ0)S∗(λ0)) =− 1

π
| ch suppV |

+
1

π

∑
λ∈ResV ∩iR\0

i

λ0 − λ

+
1

π

∑
λ∈ResV ∩H+

i

λ0 − λ
+

i

λ0 + λ
,

where H+ = {x + iy ∈ C : x > 0} is the right half-plane, provided that we
can justify moving the series

1

π

∑
λ∈ResV ∩iR\0

i

λ0 − λ
= − 1

π

∑
λ∈ResV ∩iR\0

Imλ− iλ0

|λ− λ0|2
(3.16)

out of the sum over H+. The real part of (3.16) is a sum over terms of the
form Imλ/|λ − λ0|2. Lemma 3.23 then implies that all but finitely many
summands in the real part of (3.16) are negative. Similarly, the imaginary
part of (3.16) consists of terms of sign sgnλ0, and hence converges absolutely,
so if (3.16) converges at all, it converges absolutely, and we can pull it out of
(3.15). Since we have already proven conditional convergence, decomposition
of (3.15) into Φ-orbits is valid.

As for the sum over H+, write λ = α− iβ to see

1

π

∑
λ∈ResV ∩H+

i

λ0 − λ
+

i

λ0 + λ
=

1

π

∑
λ∈ResV ∩H+

i

λ0 − α− iβ
+

i

λ0 + α− iβ

=
2

π

∑
λ∈ResV ∩H+

i
λ0 − iβ
|λ0 − λ|2

=
2

π

∑
λ∈ResV ∩H+

iλ0 + β

|λ0 − λ|2

and hence conclude

1

π

∑
λ∈ResV ∩H+

i

λ0 − λ
+

i

λ0 + λ
= − 1

π

∑
λ∈ResV \iR

Imλ− iλ0

|λ− λ0|2
(3.17)

where we used the symmetry Φ to replace the factor 2 with a sum over the left
half-plane H−. Lemma 3.23 again implies that (3.17) converges absolutely.
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Combining (3.15), (3.16), and (3.17), we have

1

2πi
tr(S ′(λ0)S∗(λ0)) = − 1

π
| ch suppV | − 1

π

∑
λ∈ResV \0

Imλ− iλ0

|λ− λ0|2
. (3.18)

But recall (3.12); S is unitary, so detS carries C into the unit circle, and
hence log detS carries C into iR. So trS ′(λ0)S∗(λ0) is imaginary, so taking
the real part of both sides of (3.18), we complete the proof.
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Chapter 4

The Breit-Wigner series

In this chapter we prove Theorem 1.7, which gives conditions for the Breit-
Wigner series B(V ) of a super-exponentially decreasing potential to diverge.

4.1 Froese’s conjecture

Froese [4] conjectured an asymptotic formula for the distribution of reso-
nances of V , provided of course that V is super-exponentially decreasing.
The rest of the work that we will do will be largely under the assumption of
this conjecture.

Definition 4.1. The associated entire function F to the potential V is the
function

F (z) = V̂ (2z)V̂ (−2z) + 1.

When we refer to the indicator function h, the counting function N , and
the auxiliary function s that relates h and N , we will always do so in the
context of the associated entire function F . So

h(θ) = lim sup
r→∞

log |F (reiθ)|
rρ

,

N counts the zeroes of F in a sector, and

s(θ, ϕ) = 2πρ lim
r→∞

N(r, θ, ϕ)

rρ

= h′(θ)− h′(ϕ) + ρ2

∫ ϕ

θ

h(ξ) dξ
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where ρ is the order of F .
In addition to the zero-counting function N , we will need a resonance-

counting function, so let n(R, θ, ϕ) be the number of resonances reiξ of V such
that r < R and ξ ∈ [θ, ϕ], assuming that π ≤ θ ≤ ϕ ≤ 2π. This assumption is
essential, because the Breit-Wigner series summed over ResV ∩C+ is always
finite, by Lemma 3.23.

Conjecture 4.2 (Froese’s conjecture). Let F be the associated entire func-
tion to V . Suppose that F is of order ρ and has completely regular growth.
If π ≤ θ ≤ ϕ ≤ 2π, then the asymptotic distribution of resonances of V and
zeroes of F is identical. So, in particular,

|N(R, θ, ϕ)− n(R, θ, ϕ)| = o(Rρ).

Froese was able to prove his conjecture for potentials which meet the
following hypothesis. (See [4, Theorem 1.3] for a sharper statement and the
proof.)

Theorem 4.3 (Froese). Suppose that V̂ has completely regular growth, and
either:

1. V is compactly supported;

2. or, ρ > 1, V ≥ 0, and there is a C > 0 such that for every reiθ ∈ C
such that

2|θ| ≤ π − π

ρ
,

we have
|V̂ (λ)|+ |V̂ ′(λ)|+ |V̂ (2)(λ)| ≤ eC| Imλ|.

Then V satisfies Froese’s conjecture.

Therefore, when we assume that V satisfies Froese’s conjecture in the
sequel, it will suffice that V meets the hypotheses of Theorem 4.3.

4.2 Proof of Theorem 1.7

There were three cases in the statement of Theorem 1.7. The first two are
treated by Theorem 4.4; the last is treated by Theorem 4.8.

64



Theorem 4.4. Suppose that V satisfies Froese’s conjecture, F is the associ-
ated entire function to V , and F has completely regular growth. If there are
0 ≤ θ < ϕ ≤ 2π such that π /∈ (θ, ϕ) and either s(θ, ϕ) 6= 0 or s(θ, ϕ) does
not exist, then B(V ) diverges.

We first observe that F has a great deal of symmetry;

V̂ (2z) =

∫ ∞
−∞

V (x)e−2ixz dx =

∫ ∞
−∞

V (x)e2ixz dx = V̂ (−2z)

so z satisfies V̂ (2z)V̂ (−2z) = −1 iff z and −z do; this implies F is preserved
by reflection about a real or imaginary axis, or about the origin.

Now let ρ be the order of V̂ . By Lemma 2.7, either ρ ≥ 1 or ρ = 0 and V
is supported at 0. In the latter case, this implies that V =

∑N
n=1 cnδ

(n)
0 for

some cn ∈ R, which contradicts that V ∈ L∞. So ρ ≥ 1.

Lemma 4.5. The order of F is ρ.

Proof. We have

log log sup
|z|=r
|F (z)| = log log sup

|z|=r
|V̂ (2z)V̂ (−2z) + 1|

∼ sup
|z|=r

log(log |V̂ (2z)|+ log |V̂ (−2z)|)

∼ sup
|z|=r

log max
σ∈{1,−1}

log |V̂ (2σz)|

= sup
|z|=r

log log |V̂ (2z)|

= log log sup
|z|=r
|V̂ (z)|

where we used the fact that ρ ≥ 1 to remove the dependency on the summand
1 and took r large enough that log(A+B) ∼ log(max(A,B)). Precomposing
with a constant factor does not affect order, so we are done.

As a consequence, we obtain a linear lower bound on the growth of the
resonance-counting function n.

Lemma 4.6. There is an angle θ ∈ [π, 2π] such that s(π, θ) exists and is
nonzero. In particular, n(·, 0, 2π) grows at least linearly.
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Proof. We first show that s(0, ·) is not identically zero. If it is, then so is
s′(0, ·), so 0 = −h(2) + ρ2h, and solving this ODE we see that

h(ξ) = c+e
ρξ + c−e

−ρξ.

If h is identically zero, then F is of zero type, yet F is of normal type since
F is of completely regular growth, so this is a contradiction. Therefore h is
not identically zero.

Since F is of completely regular growth, h(0) = h(2π). Moreover, F (z) =
F (−z), so h(0) = h(π). Moreover, ρ 6= 0 and h is analytic, so h′ must have
two real zeroes since h maps three to one. However, the only real zero α of
h′ is

α =
log c− − log c+

2ρ
,

unless one of c± = 0 (but then h is injective, which is impossible). This
is a contradiction. So there is a θ ∈ [0, 2π] such that s(0, θ) 6= 0 or s(0, θ)
does not exist. Using the fact that F (z) = F (−z), we may replace θ with a
θ ∈ [π, 2π] such that s(π, θ) 6= 0 or s(π, θ) does not exist, if necessary.

Let Z be the countable set of points ξ such that s(0, ξ) does not exist. If
θ ∈ Z, then since s(0, ·) is monotone, it must have a jump discontinuity at
θ, and since Z is countable, for every ε > 0 we can find a δ < ε such that
s(0, θ + δ) exists and is nonzero. We may then replace θ with θ + δ if ε was
chosen small enough.

This proves the first claim. The second follows immediately from the first
claim, Froese’s conjecture, and the fact that ρ ≥ 1.

In what follows, let

B(V, θ, ϕ) = −
∑

λ∈ResV
arg λ∈[θ,ϕ]

Imλ

|λ|2
.

So B(V ) = B(V, 0, 2π).

Lemma 4.7. Suppose that π < θ ≤ ϕ < 2π. If N(r, θ, ϕ) & r, then
B(V, θ, ϕ) diverges.

Proof. For convenience let

kj = n(j, θ, ϕ).
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Without loss of generality assume that eiθ is closer to the real axis than eiϕ.
Let Res∗ V be the set of resonances reiξ such that θ ≤ ξ ≤ ϕ.

We readily check

B(V, θ, ϕ) = −
∑

λ∈Res∗ V

Imλ

|λ|2
= −

∑
λ∈Res∗ V

sin arg λ

|λ|

≥ sin θ
∑

λ∈Res∗ V

|λ|−1 ≥ sin θ
∞∑
j=0

∑
λ∈Res∗ V
|λ|∈[j,j+1)

(j + 1)−1

= sin θ
∞∑
j=1

kj − kj−1

j
= sin θ

∞∑
j=1

kj

(
1

j
− 1

j − 1

)

= sin θ

(
k1 +

∞∑
j=2

kj
j(j + 1)

)
.

By Froese’s conjecture, kj ∼ N(j, θ, ϕ), and by assumption this implies that
kj & j. So

B(V, θ, ϕ) & 1 +
∞∑
j=2

j

j(j + 1)
= 1 +

∞∑
j=3

j−1

which clearly diverges.

At this point of the proof, we have shown that the only way that B(V )
could possibly converge is if “most of the resonances of V are close to the real
axis” in the sense that they are clustered in arbitrarily small sectors about R,
except possibly for an exceptional set of resonances that grows sublinearly.
For compactly supported potentials, this was already proven by Zworski [12].
This explains the somewhat unnatural hypotheses in Theorem 1.7: they are
sufficient conditions that resonances of V cannot be contained in arbitrarily
small sectors about R.

Proof of Theorem 4.4. Suppose first that s(θ, ϕ) does not exist. Then neither
does limr→∞N(r, θ, ϕ)/rρ, so there is a sequence of rk such that

lim
k→∞

N(rk, θ, ϕ)

rρk
=∞;

since N(·, θ, ϕ) is a monotone function, it follows that N(r, θ, ϕ) & rρ. On
the other hand, if s(θ, ϕ) exists and is nonzero, then N(r, θ, ϕ) & rρ is clear.
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By symmetry properties of F and the assumption that π /∈ [θ, ϕ], we may
reflect the angle [θ, ϕ] around the real axis and so assume that [θ, ϕ] ⊂ [π, 2π].
Under this assumption, Froese’s conjecture implies that

N(r, θ, ϕ) & rρ ≥ r.

By Lemma 3.23, there are only finitely many resonances in C+, which we
may remove without affecting convergence properties of B(V ). After doing
so, all summands in B(V ) have the same sign, so B(V ) ≥ B(V, θ, ϕ), and by
Lemma 4.7, B(V, θ, ϕ) =∞.

Theorem 4.8. Suppose that V satisfies Froese’s conjecture, F is the associ-
ated entire function to V , and F has completely regular growth. If

lim
ϕ→π

s(π, ϕ) = 0

then B(V ) diverges.

Proof. If s(0, π) does not exist, then there is a jump discontinuity in ϕ 7→
s(0, ϕ) at π, say by η > 0, and then s(0, π+ε) ≥ η for any ε > 0, contradicting
the hypothesis. So s(0, π) exists.

By Lemma 4.6, there is a ξ ∈ [π, 2π] such that s(π, ξ) exists and is
nonzero. Therefore s(0, ξ) = s(0, π− ξ) + s(π− ξ, π) + s(π, ξ). By symmetry
of F , s(0, π − ξ) = s(π, ξ) and s(π − ξ, π) = s(2π − ξ, 2π), so

0 6= 2s(π, ξ) + s(2π − ξ, 2π).

The terms on the right-hand side are nonnegative, so one of them is positive.
Suppose that s(π, ξ) > 0; the other case is similar. Since there is not a

jump discontinuity at π, there must be a θ > π such that s(θ, ξ) > 0. Thus
this case reduces to Theorem 4.4.
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