
Formalizations of analysis

Aidan Backus

December 2018

1 Introduction

Despite the role of mathematical analysis as the foundation of physical theories, such

as quantum mechanics, the subject is often considered fraught with pathology: the

existence of nonmeasurable sets, nowhere continuous functions, and other “monsters.”

Such complications increase the appeal of constructive mathematics, such as Bishop’s

attempt at redeveloping analysis from an intuitionistic perspective. We will provide

an overview of Bishop’s analysis and qualify his claim that classical analysis is an ap-

proximation to “constructive truth.” Finally, we consider another means of subverting

analytic pathology, and contrast it to Bishop’s approach.

2 Introducing Bishop’s analysis

Prior to the work of E. Bishop [2], mathematical analysis had defied any constructive

formalization [12]: unlike algebra and combinatorics, analysis is inherently infinitary

in nature, and most intuitionists following L. Brouwer had focused on recursion theory

and related fields. Nevertheless, Bishop was able to develop a framework for analysis

which recovered even such deep theorems as the Riemann mapping theorem. This

lead Bishop to his thesis:

The extent to which good constructive substitutes exist for the theorems

of classical mathematics can be regarded as a demonstration that classical

mathematics has a substantial underpinning of constructive truth. [2]

Bishop’s proof system, known as BISH, is essentially intuitionistic: he begins by

redefining the connectives to be as prescribed by the Brouwer-Heyting-Kolmorogov
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interpretation (BHK), and defines a set to be a collection of objects with an equiva-

lence relation, written =. Bishop defines equality this manner to facilitate avoiding

the definition of 6= as a negation; Bishop wants to avoid negative notions wherever

possible to minimize instances where he may run afoul of the law of the excluded

middle (LEM), and so simply defines 6= to be a symmetric relation such that if x 6= y

then either x 6= z or y 6= z, and such that (x = y) ∧ (x 6= y) proves (0 = 1), in

accordance with BHK. (In particular, if x and y are reals, then x 6= y iff x > y or

y > x.)

As an example, we prove the constructive intermediate value theorem. The Heine-

Cantor theorem, stating that a continuous function on a compact set is in fact uni-

formly so, cannot be proven from BISH, as we will discuss further in Sections 3 and

5. Instead, Bishop simply defines a continuous function is equipped by definition

with a modulus of continuity, a method ω such that for each ε > 0, if |y − x| < ω(ε),

then |f(y)− f(x)| < ε. Clearly any such function is classically uniformly continuous.

Besides this, the Heine-Borel theorem is not constructively valid, because it proves

the weak Kőnig’s lemma (WKL) [6], so Bishop simply defines a compact interval to

be one of the form [α, β].

Theorem 1 (intermediate value theorem). Let I be a compact interval, and let f :

I → R be continuous. If a < b are points of I, with f(a) < f(b), then for each

y ∈ [f(a), f(b)] there exists x ∈ [a, b] such that for each ε > 0, |f(x)− y| < ε.

Proof. Let y ∈ [f(a), f(b)], and let δ = infx∈[a,b] |f(x)− y|.1 If δ > 0, then f(a)− y ≤
−δ and f(b)− y ≥ δ.

Let ω be a modulus of continuity for f , and choose x0 ≤ x1 ≤ · · · ≤ xn such that

x0 = a, xn = b, and for each k, xk+1− xk < ω(δ). Then |f(xk+1)− y− (f(xk)− y)| =
|f(xk+1) − f(xk)| < δ but by definition, if x ∈ [a, b], then |f(x) − y| ≥ δ, so either

f(xk)− y and f(xk+1)− y are both positive, or they are both negative. By induction,

either f(a)−y > 0 and f(b)−y > 0 are both positive, or f(a)−y < 0 and f(b)−y < 0.

So we cannot have δ > 0. Therefore, given ε > 0, δ < ε, which was to be shown.

Notice that if we know that infinitesimals do not exist, then this theorem immedi-

ately implies the classical intermediate value theorem, as then f(x) = y. The trouble

is that we cannot assert δ = 0 even though we know (δ ≥ 0) ∧ ¬(δ > 0). This is

1BISH is not strong enough to prove that the minimum is attained.
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essentially an immediate consequence of the rejection of LEM, and in particular the

rejection of the limited principle of omniscience (LPO) [4]:

Theorem 2 (limited principle of omniscience). Assume LEM. Let {xn} be a binary

sequence. Either for each n ∈ N, xn = 0, or there is a n ∈ N such that xn = 1.

If LPO was valid in BISH, then there would be an algorithm A to determine

whether there was some n such that xn = 1; but if so, then A could solve the halting

problem, so Bishop explicitly rejects LPO. Stronger, he blames LPO for the failure of

classical analysis to be constructive, rather than the usual scapegoat, claiming that

“Applications of the axiom of choice in classical mathematics either are irrelevant or

are combined with a sweeping use of the principle of omniscience.” [2] But with the

failure of LPO, if δ ≥ 0, then ¬¬(δ = 0) = ∀ε > 0 δ < ε.

Several classical theorems of analysis are constructivized without a hitch, includ-

ing the Riemann mapping theorem, the Gram-Schmidt algorithm, and the Fourier

inversion formula on locally compact abelian groups. Still others, such as the Hanh-

Banach separation theorem, the Banach-Alaglou theorem, and the Tietze extension

theorem, must be only weakened slightly [2]. This is especially remarkable, because

the Banach-Alaglou theorem is usually taught as a corollary of Tychnoff’s theorem

(which is known to prove the axiom of choice) [9], and gives credence to Bishop’s

thesis.

3 Conflicts of continuity

Though Bishop’s work is frequently compared to that of Brouwer, BISH is compatible

with classical mathematics, say ZFC, while Brouwer’s theory, INT, includes the

axiom of continuous choice (ACC):

Axiom 3 (continuous choice). Let us work in INT. Then every function NN → N
is continuous, and for each P ⊆ NN × N modeling ∀x ∈ NN ∃y ∈ N(x, y) ∈ P , then

there exists a function NN → N whose graph is P .

INT is the theory BISH + ACC [4].

Brouwer even considered ACC a theorem, giving the following argument. First,

BISH cannot prove the existence of a discontinuous function NN → N – and so if one

denies the existence of anything which he cannot find an example of, it will follow
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that all functions on NN are continuous. Second, the existence of a choice function

can be expressed as the schema ϕP , ranging over P ⊆ NN × N, given by

ϕP = ((∀x ∈ NN ∀y ∈ N (x, y) ∈ P ) =⇒ (∃f : X → Y ∀x ∈ NN (x, f(x)) ∈ P )).

In order to give a BHK proof of ϕP , we must provide a method which converts

proofs of ψP = (∀x ∈ NN ∃y ∈ N(x, y) ∈ P ) into functions f and proofs that

∀x ∈ NN (x, f(x)) ∈ P )). But if M ` ψP , according to BHK, then M is a method

which takes x and returns M1(x) ∈ N and M2(x) ` ((x,M1(x)) ∈ P ), so if we conflate

the notions of method and function, it will follow that f = M1 [11]. In any case, ACC

contradicts LPO, which is enough to prove the existence of a discontinuous function

on Baire space [4].

However, BISH does not take ACC as an axiom, since, as Bishop puts it, “to

accept Brouwer’s arguments as a proof would destroy the character of mathematics.”

Worse, if one extends Brouwer’s argument to arbitrary relations P rather than those

on NN × N, one proves the axiom of choice, which proves LPO over BISH, and

thus achieves a contradiction. Perhaps Brouwer’s argument is more effective as a

case against BHK, which is deliberately vague about what a “method” is, than as a

“proof” of ACC.

ACC is enough to prove a classical result, Brouwer’s fan theorem (FAN) [4]:

Theorem 4 (Brouwer’s fan theorem). Let us suppose ACC or LEM + WKL. Let

S be a set of finite binary sequences such that each x ∈ 2N has an initial segment

x∗ ∈ S. Then there exists N ∈ N such that if x ∈ 2N then x∗ can be chosen to have

length at most N .

FAN, in turn, is used in several proofs that depend on continuity or compactness,

including the Heine-Cantor theorem, and that the composite of continuous functions

is continuous [5]. All of these theorems are left undecided by BISH, though Bishop

considered them true. For more consequences of FAN, we refer the reader to [14].

It appears curious that Bishop would develop an axiomatic system which cannot

prove many statements which he considered true – in fact, one could even consider

BISH as a framework from which one could develop constructive theories, but not

a useful theory in itself. Nevertheless, the failings of BISH are inevitable, as the

intuitionistic proof of FAN is incompatible with Church’s thesis [10]. A depiction of

the relationship between the theories discussed is given below.
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INT Failure of Church’s thesis

BISH Brouwer’s fan theorem well-behaved continuity

ZFC Failure of constructivism

That one must give up either FAN, constructivism, or Church’s thesis is a signif-

icant undermining of Bishop’s thesis. While constructive and classical mathematics

are similar, they cannot be too similar: either one sacrifices recursion theory to better

recover analysis, or one sacrifices part of analysis to protect recursion theory. That

whether one goes full-in with constructivism (INT) or accepts classicism (ZFC), one

ends up with FAN and its menagerie of consequences, is strong evidence that FAN is

true in a Platonic sense; but Church’s thesis is empirically true.

4 Ontological and epistemic concerns

Recall that in the statement of Theorem 1, we could not rule out the existence of

infinitesimals. If we accept LPO, since elements of [0, 1] can be coded as binary

sequences simply by working in base 2, LPO ` ((δ ≥ 0) ∧ ¬(δ > 0)) =⇒ δ = 0. But

let ζ denote the Riemann zeta function, and let xn = 0 provided that ζ(1/2+ in) = 0;

otherwise let xn = 1. Then {xn} codes a real x ∈ [0, 1]; in particular, if there exists

a proof of the Riemann hypothesis, then x = 0. But no counterexample is known, so

in the intuitionistic ontology, it is not the case that there is n ∈ N with xn = 1, and

it follows that for each ε > 0 we can prove that x < ε, even though we do not have

x = 0. In particular, {xn} is a counterexample to LPO, what Brouwer calls a fugitive

sequence [2].

Fugitives are scarcely limited to analysis; rather, they are built into the philosophy

of intuitionism. Heyting, for one, considers the example where ` is the greatest twin

prime, or ` = 1 if there does not exist a twin prime. However, Heyting denies that `

is even a well-defined number, while Bishop is willing to accept that x ∈ R [1].

Either way, a truth value changes – that ` is well-defined, or that x is infinites-

imal – when one resolves either the twin prime conjecture or Riemann hypothesis.
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Heyting defends this by arguing that to assert that ` was well-defined or that x was

infinitesimal prior to a proof of the conjecture is to make a metaphysical assertion

about the nature of mathematics; to argue that ` was well-defined implies that in

some Platonic sense, the behavior of ` is fixed.

But let us suppose that the twin prime conjecture is decidable in our favorite

formal system (whether that is ZFC, BISH, or INT); since the twin prime conjecture

is ultimately a statement about finite objects, this is a reasonable assumption. If a

mathematician is ever able to resolve the twin prime conjecture, then he will get the

same truth value as another mathematician working independently; and so the value

of ` has already been determined, and it was that it was not known. A sufficiently

advanced alien society from Alpha Centauri would arrive at the same value of ` – and

thus the value of ` must somehow exist outside of human thought.

In this sense, to say that ` was not well-defined because we did not know to

compute the value is the same as to claim that, for each possible origin of life ϕ,

ϕ was not the origin of life or else ϕ was not-not the origin of life, since we as a

society do not know that ϕ was not the origin of life, and just as we cannot check

each possible twin prime and therefore must give a proof by other means, we cannot

travel back in time to verify the truth value of ϕ; yet this conclusion is absurd.

Classical and constructive mathematics therefore diverge sharply on the nature of

fugitives, further undermining Bishop’s thesis. However, the damage done to actual

theorems is minimal, and usually manifests in the same form as in Theorem 1: morally,

the same result holds (intervals are sent to intervals), but there is a slight caveat to

allow for fugitive behavior (there may be an infinitesimal gap in the image interval).

If one is therefore willing to turn a blind eye to the philosophically curious origins of

such caveats, constructive and classical mathematics remain effective approximations

to each other.

5 The pointless alternative

Let us now consider another possible constructivisation of analysis, which avoids

analytic pathology by sacrificing the primacy of the notion of a point, rather than

FAN or Church’s thesis. As noted by Picado and Pultr [8], points are unrealistic

models for computation, as it is impossible to make measurements with absolute

precision, and so functions defined by their actions on points is perhaps inappropriate
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for use in physics and engineering. In pointless topology, however, open sets are taken

as primitive, viewed as elements of a join-complete Heyting algebra (or, in brief, a

frame).

Let X be a (T0) topological space, and ΩX be its topology. If F is a proper filter

in a lattice L, we say that F is completely join-irreducible if, whenever
∨
A ∈ F ,

A ∩ F is nonempty. On the other hand, if F is a proper filter in ΩX such that, for

some x ∈ X, F = {U ∈ ΩX : x ∈ U}, we say that F is principal. If a proper filter in

ΩX is completely join-irreducible if and only if it is principal, we will say that X is

a sober space. Since every point x ∈ X is contained in a principal ultrafilter, we can

identify x with some completely join-irreducible filter provided that X is sober. All

Hausdorff spaces, and therefore the vast majority of topological spaces encountered

in analysis, are sober.

If L is a frame, we let FL denote the set of all completely join-irreducible filters

in L. In fact FL is a topological space, with open sets of the form a∗ = {F ∈ F(L) :

a ∈ F}, for a ∈ L. Thus we can identify a with a∗, and consider L the topology on

FL. If M is also a frame, we define morphisms f : L → M to be lattice morphisms

such that f(
∨
A) =

∨
f(A) for all A ⊆ L.

Thus we arrive at a duality between frames and sober spaces:

Theorem 5 (pointless duality). The map Ω is a fully faithful, contravariant functor

from sober spaces to frames, and FΩ is the identity functor.

We omit the proof, but refer the reader to [8].

Thus we are justified in defining a topological space to be a frame, and defining a

continuous mapping to be an opposite morphism. One can define uniform structures

and metrics in frames, recovering the Heine-Cantor theorem. With this so-called

“pointless” framework, many classical theorems which are highly nonconstructive,

such as those of Stone-Čech and Tychonoff, have been given proofs which avoid the

axiom of choice and LEM. However, the topological spaces constructed in such proofs

are not guaranteed to have any points without an appeal to the Boolean prime ideal

theorem or worse [3].

A similar approach can be taken to recover a pointless measure theory [13], which

perhaps perhaps better models how analysts actually think of measure theory, by

assuming that all functions are measurable and identifying null sets with the empty

set (and thus identifying functions which disagree on null sets), as seen in, e.g., Evans

[7].
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The successes of pointless measure theory and topology lend credence to Bishop’s

claim that classical mathematics approximates constructive mathematics. However,

the pointless approach provides a significant algebraization and simplification, of var-

ious classical theorems of topology and analysis, contrasted to the complications of

Bishop’s formalization; and besides contradicts Bishop’s assertion that “[v]ery little

is left of general topology after that vehicle of classical mathematics has been taken

apart and reassembled constructively.”

6 Conclusion

Both through BISH and the pointless approach, one can constructively recover anal-

ysis to a close approximation of the classical theory. Certainly such a formalism is

mathematically valid, and at times can even simply proofs and algorithms. In that

sense, Bishop’s original goal can be seen as an outright success.

However, while one does not lose much of mathematics in passing to a constructive

setting, one does face philosophical difficulties, in that one can argue for the existence

of fugitive reals and the failure of Church’s thesis, as seems to be inevitable in the

intuitionistic setting. These critiques are not so much due to Bishop’s failings as they

are to the philosophy of Brouwer and Heyting in general, but they still undermine

Bishop’s thesis. Most ironically, the field that Bishop considered most hopeless to

constructivize – general topology – is the one that suffers the fewest complications

when passing to the intuitionistic ontology.
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