
SOME INTERESTING OPEN PROBLEMS

AIDAN BACKUS

1. Calculus of variations in nonreflexive Banach spaces

Problem 1.1 (Evans). Let u be an ∞-harmonic function on a domain in R2. Must u ∈ C
4/3
loc ?

Problem 1.2. Consider the scalar PDE

Aijkℓ∂i∂ju∂ku∂ℓu = F (u)

on a domain in R2, where F (u) is a smooth first-order nonlinearity and A is a smooth elliptic
tensor. (Here, you can be loose about what “elliptic tensor” means, but at least the class of PDE
considered should include the ∞-Laplacian in the presence of a Riemannian metric.)

Show that the Evans-Savin theorem [ES08] holds: there exists α > 0 such that u ∈ C1+α
loc .

Problem 1.3. Let u be a function of least gradient on a simply connected domain in Rd. Show
that there exist functions uac, uC , uj of least gradient such that:

(1) u = uac + uC + uj .

(2) uac ∈W 1,1
loc ∩ C0

loc.
(3) uC ∈ C0

loc and supp(|duC |) has Lebesgue measure zero.
(4) dimH(supp | duj |) ≤ d− 1.

This holds for d ≤ 7 by [Bac24a, Proposition 4.6]; the obstruction to this holding for arbitrary
BV functions is basically topological in nature and so should not be detected by codimension 8
singularities.

Problem 1.4. Let u be a solution of the total variation flow on a convex domain in Rd, with
Dirichlet boundary data.

(1) Under what conditions on the initial and boundary data do the level sets of u undergo mean
curvature flow?

(2) If the level sets are undergoing mean curvature flow, do they form a lamination?

A Borel set Λ is Hausdorff equidimensional if for every s < dimH(Λ), x ∈ Λ, and r > 0, the
restriction of the Hausdorff measure Hs to B(x, r) ∩ Λ is not σ-finite.

Problem 1.5. For each 2 ≤ p < ∞, let up be a p-harmonic function on a simply connected,
nonpositively curved surface M , all of which have the same boundary data. Let

dvq := | dup|p−2 ⋆ dup

where 1/p + 1/q = 1. Then vq is a well-defined function and there exists a function v of least

gradient such that vq → v in L
3/2
loc along a subsequence. Thus the energy density of up concentrates

as p→ ∞ on the set Λ := supp(| dv|).
Show that Λ is Hausdorff equidimensional. The intuition for this comes from [Bac24b, Theorem

1.6], which is a quantitative version of this in some special cases.
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Given a matrixA, letQ(A) := (AA†)1/2 be the positive-semidefinite part ofA. A map u :M → N

is Schatten p-harmonic if u ∈W 1,p
loc and

∇∗
u(Q(du)p−2 du) = 0,

where ∇∗
u is the covariant divergence.

Problem 1.6 (Daskalopoulos–Uhlenbeck). Let u : M → N is Schatten p-harmonic where p >
dimM .

(1) Show that Q(du)p−2 du ∈W 1,2
loc . This holds if M = N = H2 [DU22, Theorem 4.17].

(2) Must u ∈W 1,∞
loc ?

(3) Must there exist α > 0 such that u ∈ C1+α
loc ?

A map u is Schatten ∞-harmonic if it is a limit in C0
loc of Schatten p-harmonic maps with the

same boundary data. Schatten ∞-harmonic maps were introduced in [DU22], and their key feature
is that L := Lip(u) is minimized among all maps with the boundary data f . The canonical stretch
locus of u is the set of pairs (x, y) ∈ M2 such that x ̸= y and for every Lipschitz map v : M → N
with the same boundary data as u, if Lip(v) = L, then dist(v(x), v(y)) = Ldist(x, y).

Problem 1.7 (Daskalopoulos–Uhlenbeck). Let M,N be simply connected Riemannian manifolds
such that N is complete and nonpositively curved. (To avoid technicalities, it may help to assume
that M,N are both flat.) Let u :M → N be a Schatten ∞-harmonic map.

(1) Show that for every (x, y) ∈ M2 such that x ̸= y and dist(u(x), u(y)) = Lip(u) dist(x, y),
(x, y) is contained in the canonical stretch locus of u.

(2) Show that u is a absolutely minimizing Lipschitz map in the sense that for every convex
U ⊆M , and every Lipschitz map v which agrees with u away from U , LipU (u) ≤ LipU (v).

(3) Show that u is tight in the sense of Sheffield–Smart [SS12].

Problem 1.8 (Daskalopoulos–Uhlenbeck). Let M be a simply connected Riemannian surface, let
N a nonpositively curved Riemannian symmetric space, and let g be the Lie algebra of Killing fields
on N . Let up :M → N be Schatten p-harmonic maps with the same boundary data, converging to
a Schatten ∞-harmonic map u. Since N is a symmetric space, one obtains a Noether current dvq
from up, where 1/p+ 1/q = 1 and vq maps M into g.

Show that there exists v :M → g such that:

(1) Along a subsequence, vq → v in L
3/2
loc .

(2) supp | dv| is a subset of the projection of the canonical stretch locus of u.

Thus the energy density of up concentrates on the canonical stretch locus of u. This holds whenever
M = N = H2 and dup descends to a compact quotient of M [DU22, Theorem 7.1].

2. Harmonic analysis

For each p-form ψ on Rd, the exterior k-plane transform of ψ is the function on the tautological
bundle over the Grassmannian,

Rkψ(P, x) :=

∫
P⊥

ψ(x+ y)|P dy

where ψ(x+ y)|P is the projection of ψ(x+ y) to the pth exterior power of P .

Problem 2.1 (Solomon). An inversion formula holds for the exterior k-plane transform on Schwartz
p-forms [Sol11, Theorem 6.1]. Show that this inversion formula holds on the space of p-forms ψ,

such that there exist ε, α > 0 such that ψ ∈ Cα
loc and |ψ(x)| ≲ ⟨x⟩−(d+ε).
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Given a compact set X ⊂ Rd and h > 0, let Xh := {x ∈ Rd : dist(x,X) < h}. Let

Fhf(ξ) := (2πh)−d/2

∫
Rd

e−ix·ξ/hf(x) dx

be the semiclassical Fourier transform. Let

β♯(X,Y ) := sup{β : ∥1Xh
Fh1Yh

∥L2→L2 ≲β h
β}.

denote the sharp uncertainty exponent of two compact sets X,Y ⊂ Rd.
An arithmetic Cantor set is a compact set X ⊂ R such that 0 < dimH(X) < 1 and there exists

an integer M ≥ 3 and a set A ⊆ {0, . . . ,M − 1} such that X is the set of x ∈ R such that there
exists a sequence (ai) ⊂ A such that x =

∑∞
i=1 ai/M

i.

Problem 2.2 (Dyatlov). Let 0 < δ < 1.

(1) Show that there exists β♯δ > 0 such that for every arithmetic Cantor set X, if dimH(X) = δ,
then for the generic α > 0,

β♯(X,αX) ≥ β♯δ.

(2) Show that the above estimate fails for α = 1.

An Ahlfors-David set is a compact set X ⊂ Rd such that, with s := dimH(X), for every x ∈ X
and 0 < r < 1,

rs ≲ Hs(X ∩B(x, r)) ≲ rs.

The sharp implied constant here is called the Ahlfors-David regularity of X.

Problem 2.3. Construct arithmetic Cantor sets Xj such that:

(1) dimH(Xj) > 1− 1/j.
(2) The Ahlfors-David regularity of Xj is bounded.

(3) For some θ < 1, β♯(Xj , Xj) ≲ θj .

Problem 2.4 (Dyatlov). Let X ⊂ R2 be an Ahlfors-David set such that 0 < dimH(X) ≤ 1, and
let χ ∈ C∞

cpt((0,∞)). Show that there exists β = β(X,χ) > 0 such that the following holds: Let

Bhf(x) :=
1

2πh

∫
R2

|x− y|2i/hχ(|x− y|)f(y) dy.

Then

∥1Xh
Bh1Xh

∥L2→L2 ≲ hβ.

If this estimate fails, then X is self-orthogonal in the sense of [BLT23].

3. Differential geometry and geometric topology

Problem 3.1 (Liu). Let M be a closed oriented Riemannian manifold of dimension d. Suppose
that either d ≤ 7 or the metric on M is suitably generic. Let ρ ∈ Hd−1(M,R). If there exists a
measurable d−1-form F such that [F ] = ρ and ∥F∥L∞ ≤ 1, must there exist a continuous d−1-form
with these properties?

By a calibration argument, a positive answer to this question implies that every class in the image
of the natural homomorphism Hd−1(M,Z) → Hd−1(M,R) contains a smooth area-minimizing
hypersurface. However, I expect that the proof would be utterly different than the usual proofs
that minimal hypersurfaces are smooth.

Let T denote the Teichmüller space of a closed surface, let ∥·∥∞ denote the earthquake norm on
the tangent bundle of T , let ω be the Weil-Petersson symplectic form on T , and let ∥ · ∥1 denote
the dual norm of ∥ · ∥∞ with respect to ω. By Wolpert’s duality theorem, ∥ · ∥1 is the infinitesimal
version of the Thurston asymmetric metric on T .
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Problem 3.2. Let σ ∈ T . Construct a map

expσ : TσT → T

with the following properties:

(1) On a neighborhood of 0, expσ is a diffeomorphism.
(2) For every ray ℓ based at 0, (expσ)∗ℓ is a geodesic for the Thurston asymmetric metric.
(3) Let v ∈ TσT be such that ∥v∥∞ = 1, and let

v∗ := {α ∈ TσT : ω(v, α) = ∥α∥1 = 1}
be the dual flat of v. Then for every sufficiently small t > 0, v∗ is the set of infinitesimal
earthquakes generated by projective measured geodesic sublaminations of the canonical
lamination maximally stretched by the homotopy class of

idM : (M,σ) → (M, expσ(tv)).

The “abelianized” version of this theorem (that is, for the stable norm) is true [Bac24b, §8.3].

4. Descriptive set theory and recursion theory

Problem 4.1. What is the algorithmic information density of the Gromov-Hausdorff space?

For our purposes, a sentence φ is relatively consistent , if the theory ZFC+φ is consistent provided
that the theory ZFC + “There is a measurable cardinal” is consistent. The measurable cardinal
is just to allow for the possibility that 2ℵ0 is real-valued measurable; of course it would also be
interesting to know that φ is consistent relative to ZFC alone.

Problem 4.2. A set E ⊆ R has a small distance set if

dim({|x− y| : x, y ∈ E}) = dimE.

There exists s∗ < 1 such that for every Σ1
1 set E such that dimHE ∈ [s∗, 1], E does not have a

small distance set [Fal85]. On the other hand, if Martin’s axiom is true, then for every s ∈ [0, 1]
there exists Es such that Es has a small distance set and dimHEs = s.

(1) Show that it is relatively consistent that there exists s ∈ [0, 1] such that for every E, if
dimE = s then E does not have a small distance set.

(2) What about Π1
1 and Σ1

n sets?

Problem 4.3 (Fusco–Spector). Let X be a Polish space, let B(X) be the Borel σ-algebra of X,
and let M(X) be the space of finite signed Borel measures on X, equipped with its total variation
norm. A function ψ : B(X) → R is an integral representation of a continuous linear functional L
on M(X), if for every µ ∈ M(X),

L(µ) =

∫
X
ψ dµ,

where the integral is a Kolmogorov–Burkhill integral. A modification of the arguments of [Mau73]
shows that assuming Martin’s axiom, every continuous linear functional on M(X) has an integral
representation.

Show that it is relatively consistent that there exists a continuous linear functional on M(X)
which does not have an integral representation.
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