SOME INTERESTING OPEN PROBLEMS

AIDAN BACKUS

1. CALCULUS OF VARIATIONS IN NONREFLEXIVE BANACH SPACES

Problem 1.1 (Evans). Let u be an co-harmonic function on a domain in R2?. Must u € Ci/cg?

Problem 1.2. Consider the scalar PDE
AT Y,0;ududpu = F(u)

on a domain in R?, where F(u) is a smooth first-order nonlinearity and A is a smooth elliptic
tensor. (Here, you can be loose about what “elliptic tensor” means, but at least the class of PDE
considered should include the co-Laplacian in the presence of a Riemannian metric.)

Show that the Evans-Savin theorem [ES08] holds: there exists a > 0 such that u € CLT,

loc

Problem 1.3. Let u be a function of least gradient on a simply connected domain in R?. Show
that there exist functions g, uc, u; of least gradient such that:

1,1
(2) Uge € Wy, NCY...
(3) uc € CP, and supp(| duc|) has Lebesgue measure zero.
(4) dimy(supp|du,|) <d—1.
This holds for d < 7 by [Bac24a, Proposition 4.6]; the obstruction to this holding for arbitrary
BV functions is basically topological in nature and so should not be detected by codimension 8

singularities.
Problem 1.4. Let u be a solution of the total variation flow on a convex domain in RY, with
Dirichlet boundary data.

(1) Under what conditions on the initial and boundary data do the level sets of u undergo mean
curvature flow?
(2) If the level sets are undergoing mean curvature flow, do they form a lamination?

A Borel set A is Hausdorff equidimensional if for every s < dimy(A), z € A, and r > 0, the
restriction of the Hausdorff measure H* to B(z,r) N A is not o-finite.

Problem 1.5. For each 2 < p < oo, let u, be a p-harmonic function on a simply connected,
nonpositively curved surface M, all of which have the same boundary data. Let

dv, = | duy [P~ % du,

where 1/p + 1/g = 1. Then v, is a well-defined function and there exists a function v of least

gradient such that v, — v in Lf’o/ C2 along a subsequence. Thus the energy density of u, concentrates
as p — oo on the set A := supp(|dv|).

Show that A is Hausdorff equidimensional. The intuition for this comes from [Bac24b, Theorem
1.6], which is a quantitative version of this in some special cases.
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Given a matrix A, let Q(A) := (AAT)I/2 be the positive-semidefinite part of A. Amapu: M — N
is Schatten p-harmonic if u € I/Vlif and

Vi(Q(du)"™* du) =0,
where V7 is the covariant divergence.

Problem 1.6 (Daskalopoulos—Uhlenbeck). Let w : M — N is Schatten p-harmonic where p >
dim M.

(1) Show that Q(du)?~2du € W,"2. This holds if M = N = H? [DU22, Theorem 4.17].

(2) Must u € W7

ocC

(3) Must there exist & > 0 such that u € CLLt*?

A map u is Schatten oco-harmonic if it is a limit in CI%C of Schatten p-harmonic maps with the
same boundary data. Schatten co-harmonic maps were introduced in [DU22], and their key feature
is that L := Lip(u) is minimized among all maps with the boundary data f. The canonical stretch
locus of u is the set of pairs (x,y) € M? such that z # y and for every Lipschitz map v : M — N
with the same boundary data as u, if Lip(v) = L, then dist(v(z),v(y)) = Ldist(z,y).

Problem 1.7 (Daskalopoulos—Uhlenbeck). Let M, N be simply connected Riemannian manifolds
such that N is complete and nonpositively curved. (To avoid technicalities, it may help to assume
that M, N are both flat.) Let w: M — N be a Schatten co-harmonic map.

(1) Show that for every (z,y) € M? such that z # y and dist(u(z),u(y)) = Lip(u) dist(z, y),
(z,y) is contained in the canonical stretch locus of w.

(2) Show that w is a absolutely minimizing Lipschitz map in the sense that for every convex
U C M, and every Lipschitz map v which agrees with u away from U, Lipy (u) < Lipg(v).

(3) Show that w is tight in the sense of Sheffield-Smart [SS12].

Problem 1.8 (Daskalopoulos—Uhlenbeck). Let M be a simply connected Riemannian surface, let
N a nonpositively curved Riemannian symmetric space, and let g be the Lie algebra of Killing fields
on N. Let u, : M — N be Schatten p-harmonic maps with the same boundary data, converging to
a Schatten oo-harmonic map u. Since N is a symmetric space, one obtains a Noether current dv,
from u,, where 1/p+1/q =1 and v, maps M into g.

Show that there exists v : M — g such that:

(1) Along a subsequence, v, — v in L?O/ 02.
(2) supp |dv| is a subset of the projection of the canonical stretch locus of w.

Thus the energy density of u, concentrates on the canonical stretch locus of u. This holds whenever
M = N =H? and du, descends to a compact quotient of M [DU22, Theorem 7.1].

2. HARMONIC ANALYSIS

For each p-form 1 on R?, the exterior k-plane transform of ¢ is the function on the tautological
bundle over the Grassmannian,

Rib(Poa) = [ oo +)ledy

where (2 + y)|p is the projection of ¢(x 4+ y) to the pth exterior power of P.

Problem 2.1 (Solomon). An inversion formula holds for the exterior k-plane transform on Schwartz
p-forms [Solll, Theorem 6.1]. Show that this inversion formula holds on the space of p-forms 1,
such that there exist £, > 0 such that ¢ € CZ_ and |[¢)(z)| < (x)~(@+e),
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Given a compact set X C R% and h > 0, let X}, := {x € R : dist(z, X) < h}. Let

Fuf(€) = (2mh) 2 / N f(2) da

Rd
be the semiclassical Fourier transform. Let

ﬁﬁ(Xa Y) = SUP{/B : Hth‘g\lehHL2—>L2 5,3 hﬁ}'

denote the sharp uncertainty exponent of two compact sets X,Y C R%.

An arithmetic Cantor set is a compact set X C R such that 0 < dimy(X) < 1 and there exists
an integer M > 3 and a set A C {0,..., M — 1} such that X is the set of 2 € R such that there
exists a sequence (a;) C A such that x = Y%, a;/M".

Problem 2.2 (Dyatlov). Let 0 < § < 1.

(1) Show that there exists 5§ > 0 such that for every arithmetic Cantor set X, if dimy/(X) =6,
then for the generic a > 0,
BH(X,aX) > 6L
(2) Show that the above estimate fails for av = 1.

An Ahlfors-David set is a compact set X C R such that, with s := dimy(X), for every x € X
and 0 < r < 1,
r* SH(X N Bx,r)) Sre.
The sharp implied constant here is called the Ahlfors-David regqularity of X.

Problem 2.3. Construct arithmetic Cantor sets X; such that:
(1) dimy(X;) >1—1/5.
(2) The Ahlfors-David regularity of X; is bounded.
(3) For some 0 < 1, B¥(X;, X;) < 67.

Problem 2.4 (Dyatlov). Let X C R? be an Ahlfors-David set such that 0 < dimy(X) < 1, and
let x € C5:((0,00)). Show that there exists 8 = (X, x) > 0 such that the following holds: Let

By f(z) : |z — y*/"x(lx — y)) f(y) dy.

" 2h Jpe
Then

11, Brlx, Iz S hP
If this estimate fails, then X is self-orthogonal in the sense of [BLT23].

3. DIFFERENTIAL GEOMETRY AND GEOMETRIC TOPOLOGY

Problem 3.1 (Liu). Let M be a closed oriented Riemannian manifold of dimension d. Suppose
that either d < 7 or the metric on M is suitably generic. Let p € H?'(M,R). If there exists a
measurable d—1-form F' such that [F] = p and || F||z < 1, must there exist a continuous d— 1-form
with these properties?

By a calibration argument, a positive answer to this question implies that every class in the image
of the natural homomorphism Hy (M,Z) — Hyi 1(M,R) contains a smooth area-minimizing
hypersurface. However, I expect that the proof would be utterly different than the usual proofs
that minimal hypersurfaces are smooth.

Let .7 denote the Teichmiiller space of a closed surface, let || -||o denote the earthquake norm on
the tangent bundle of .7, let w be the Weil-Petersson symplectic form on .7, and let || - || denote
the dual norm of || - || with respect to w. By Wolpert’s duality theorem, || - ||; is the infinitesimal
version of the Thurston asymmetric metric on 7.
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Problem 3.2. Let o0 € 7. Construct a map
exp, : 167 — T
with the following properties:

(1) On a neighborhood of 0, exp,, is a diffeomorphism.
(2) For every ray ¢ based at 0, (exp,)«¢ is a geodesic for the Thurston asymmetric metric.
(3) Let v € T,,.7 be such that ||v]|s = 1, and let

vii={a €T,T w(v,a) = ol =1}
be the dual flat of v. Then for every sufficiently small ¢ > 0, v* is the set of infinitesimal

earthquakes generated by projective measured geodesic sublaminations of the canonical
lamination maximally stretched by the homotopy class of

idys 2 (M, 0) — (M, exp,(tv)).

The “abelianized” version of this theorem (that is, for the stable norm) is true [Bac24b, §8.3].

4. DESCRIPTIVE SET THEORY AND RECURSION THEORY
Problem 4.1. What is the algorithmic information density of the Gromov-Hausdorff space?

For our purposes, a sentence ¢ is relatively consistent, if the theory ZFC+ is consistent provided
that the theory ZFC + “There is a measurable cardinal” is consistent. The measurable cardinal
is just to allow for the possibility that 280 is real-valued measurable; of course it would also be
interesting to know that ¢ is consistent relative to ZFC alone.

Problem 4.2. A set £ C R has a small distance set if
dim({|z —y| : z,y € E}) = dim E.

There exists s, < 1 such that for every X} set E such that dimy E € [s«, 1], E does not have a
small distance set [Fal85]. On the other hand, if Martin’s axiom is true, then for every s € [0, 1]
there exists F such that F, has a small distance set and dimy Es = s.

(1) Show that it is relatively consistent that there exists s € [0, 1] such that for every E, if
dim E = s then E does not have a small distance set.
(2) What about IT} and X! sets?

Problem 4.3 (Fusco-Spector). Let X be a Polish space, let B(X) be the Borel o-algebra of X,
and let M(X) be the space of finite signed Borel measures on X, equipped with its total variation
norm. A function ¢ : B(X) — R is an integral representation of a continuous linear functional L
on M(X), if for every u € M(X),

L(p) = /X Y du,

where the integral is a Kolmogorov—Burkhill integral. A modification of the arguments of [Mau73]
shows that assuming Martin’s axiom, every continuous linear functional on M(X) has an integral
representation.

Show that it is relatively consistent that there exists a continuous linear functional on M (X)
which does not have an integral representation.
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