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1. Oscillatory integrals with linear phase

Recall that pseudodifferential operators are Fourier integral operators whose phase

satisfies

ϕ(x, y, θ) = 〈x− y, θ〉.
A natural generalization is to consider Fourier integral operators for which ϕ is linear

in θ. So, we need to discuss oscillatory integrals with linear phase.

Definition 1.1. A phase ϕ is a linear phase if there exists a smooth map Φ : X → RN

such that

ϕ(x) = 〈Φ(x), θ〉
and Φ has at least one zero.

The critical points of ϕ are exactly the zeroes of Φ. We want ϕ to have a critical

point – Hörmander is working modulo C∞, and integration with nonstationary phase

implies that if ϕ has no critical points then any Fourier integral operator with phase

ϕ is a smoothing operator, and so is 0 modulo C∞.

Lemma 1.2. Let ϕ(x) = 〈Φ(x), θ〉 be a linear phase on X ⊆ Rn. Then Φ is a

submersion in a neighborhood in {Φ = 0}.

Proof. Since ϕ is a phase and ∂θϕ = Φ, if Φ(x) = 0 then dΦ is surjective on tangent

spaces. Thus the rank of Φ is N , but rank is lower semicontinuous so this remains true

in a neighborhood of {Φ = 0}. �

Since {Φ = 0} is nonempty, it follows that N ≤ n and the set Y = {∂θϕ = 0} is

actually a manifold of codimension N , which we call the critical manifold .

Example 1.3. Suppose we are solving the wave equation forwards in time; then we

get the phase ϕ(x, t, θ) = 〈x, θ〉 − t|θ|. Notice that this is singular along the light

cone {(x, t) : |x| = t, t > 0}, which is a rectifiable set of codimension 1 but not

a manifold. The takeaways here are that the case N < n really is interesting in
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non-elliptic problems, and that linear phases really do generalize pseudodifferential

operators in ways that general Fourier integral operators do not.

Our first result is that “up to isomorphism, a linear phase is determined by its

critical manifold”.

Lemma 1.4. If ϕ1, ϕ2 are linear phases with the same critical manifold Y then there is

a neighborhood U of Y and a map ψ ∈ C∞(U → GL(RN)) such that for every x ∈ U ,

ϕ1(x, θ) = ϕ2(x, ψ(x)θ).

Proof. Since Φ1,Φ2 are submersions that cut out the same manifold, for every x ∈ Y ,

dΦj(x) have the same kernel and cokernel (and their cokernel is 0). Therefore there

exists a linear automorphism ψ(x) such that Φ1(x) = ψ(x)Φ2(x) and so Φ1 − ψΦ2 has

double zeroes on Y . In particular ψ is smooth since Φj are, so we can extend ψ to

a neighborhood of Y . If Φj = (Φk
j )k then Taylor’s formula says that there exists a

smooth family of matrices R

Φj
1 = ψjkΦ

k
2 +RjkΦ

k
2

where Rjk|Y = 0. Therefore (ψ + R)t has the required properties, at least when we

are so close to Y that ||R|| < ||ψ|| so that ψ +R is invertible. �

Conversely, if Y is a submanifold of X of codimension N , then we can write Y =

{x ∈ X : x1 = · · · = xN = 0} in some coordinate system, and then use this fact to

find a linear phase ϕ of critical manifold Y .

If ϕ1, ϕ2 are two linear phases with critical manifold Y , ψ is the isomorphism between

them, and a1 is a symbol, then

a2(y, θ) = a1(y, ψ(y)θ)| detψ(y)| (1)

satisfies the equality of oscillatory integrals∫
RN

eiϕ1(y,θ)a1(y, θ) dθ =

∫
RN

eiϕ2(y,θ)a2(y, θ) dθ.

Most of this section will be dedicated to viewing symbols as a suitable map between

bundles rather than something that obeys (1) under a transition map ψ.

Definition 1.5. Let Y be a submanifold of X, N = codimY , 1−ρ ≤ δ < ρ. Choose a

linear phase ϕ of critical manifold Y . The space of all oscillatory integrals of the form

I(x) = (2π)−
n+2N

4

∫
RN

eiϕ(x,θ)a(x, θ) dθ

where a is any element of S
m+(n−2N)/4
ρ,δ modulo C∞(X) is called Imρ,δ(X, Y ).
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Elements of Imρ,δ(X, Y ) are equivalence classes of distributions on X modulo C∞(X),

so Imρ,δ(X, Y ) is a subspace of D′(X)/C∞(X). The choice of ϕ does not matter, since

such a ϕ exists, and applying the transformation ψ given by the previous lemma will

at worst multiply a by a Jacobian which is constant in θ. Furthermore, integrating

by nonstationary phase implies that we may assume that a is supported in a small

neighborhood of Y . The strange choice of constant −(n+ 2N)/4 will be justified later

on, but is partially motivated by this example:

Example 1.6. We’re mainly interested in the case that I is the Schwartz kernel of

a pseudodifferential operator on a manifold Y of dimension N . Then X = Y 2, so

n = 2N . In this case, we can write x = (y1, y2) and a is a function of (y1− y2, θ) since

the Schwartz kernel of a pseudodifferential operator is not just an oscillatory integral

but a singular integral. Therefore we get the constant (2π)−N that appears in the

definition of a pseudodifferential operator.

2. A review of differential topology

In order to talk about principal symbols, we will need to review some differential

topology.

We first treat conormal bundles. Hörmander seems to mix up normal and conormal

bundles a few times, which is pretty confusing.

Whenever I refer to a “closed embedding” I always mean a closed embedding of

manifolds. Suppose that we have closed embedding Y ⊆ X. We want to define the

normal bundle NY to Y to be the orthocomplement of TY in TX|Y , but this requires

a choice of Riemannian metric. To get rid of this choice we instead observe that if

we chose a Riemannian metric and ν was a normal vector, we could identify ν with a

covector η using the Riesz representation theorem, and η would annihilate TY . So we

can define the normal bundle to be the dual of the annihilator of TY . The annihilator

of TY is a more “natural” concept, so we define:

Definition 2.1. If Y ⊆ X is a closed embedding, the conormal bundle N∗Y to Y is

the subbundle of T ∗X defined by

N∗Y = {(y, η) ∈ T ∗X : y ∈ Y, 〈η, TyY 〉 = 0}.

Now we introduce the notion of a density bundle on a manifold X. We first do the

same for a vector space. Suppose that V is a finite-dimensional vector space, and µ is

the Haar measure of V . Then µ defines a linear map µ : V ⊗n → R by letting µ(
⊗

j vj)

be the volume of the parallelpiped
⊗

j vj, which satisfies for every linear operator A,

µ(Av1 ⊗ · · · ⊗ Avn) = | detA|µ(v1 ⊗ · · · ⊗ vn).

Since Haar measures are unique only up to a scalar, we get a one-dimensional vector

space of Haar measures, known as the density space of V .
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Definition 2.2. Let X be a manifold of dimension n. The s-density bundle, Ωs, on

X is the line bundle associated to the GL(Rn)-representation A 7→ | detA|−s. An

s-density is a smooth section of the s-density bundle.

More concretely, “a density is something that transforms like a density” in the sense

that a is a s-density iff for every change of coordinates y = ϕ(x),

a(y) = a(x)| det dϕ|s.

In particular, a 1-density transforms like a volume form, and we can integrate 1-

densities.

We obviously have Ωs ⊗ Ωt = Ωs+t. Since we can integrate 1-densities, if u is a

s-density and v is a 1 − s-density of compact support then 〈u, v〉 =
∫
X
u ⊗ v is well-

defined.

Definition 2.3. An s-distribution density on X is an element of the dual of C∞c (X →
Ωs).

3. Principal symbols for oscillatory integrals

We now assign principal symbols to the oscillatory integrals in Imρ,δ(Y ×RN). I think

that there is a typo in Hörmander’s paper here where he mixes up n and N a few

times.

Lemma 3.1. The quantization map

T :
S
m+n−2N

4
ρ,δ (Y ×RN)

S
m+δ+n−2N

4
−ρ

ρ,δ (Y ×RN)
→

Imρ,δ(X, Y )

Im+δ−ρ
ρ,δ (X, Y )

that sends a symbol to its oscillatory integral with linear phase is a well-defined linear

isomorphism.

Proof. Elements of Imρ,δ(X, Y )/Im+δ−ρ
ρ,δ are determined by the restriction of their symbol

a to Y , so T to the oscillatory integral is a surjective and well-defined linear map. Let

Ta = 0, and without loss of generality assume that:0

(1) a is supported in a neighborhood of Y .

(2) Y = {(0, y) ∈ X} where we have the decomposition x = (x′, y).

(3) ϕ(x, θ) = 〈x′, θ〉.

That Ta = 0 means that for every u ∈ D(X), 〈Ta, u〉 = 0. But we can take u(x) to

only depend on x′, thus 〈Ta, u〉 = 0 implies∫∫
Y×RN

ei〈x
′,θ〉a(x, θ)u(x′) dx′ dθ = 0.
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Given ξ ∈ RN we can replace u(x′) by u(x′)e−i〈x
′,ξ〉 and conclude that∫∫

Y×RN

ei〈x
′,θ〉a(x, ξ + θ)u(x′) dx′ dθ = 0. (2)

We are interested in the asymptotics of (2) as ξ →∞. In fact, Taylor’s formula gives

a(x, ξ + θ) ∼
∑
α

i∂αξ
α!
a(x, ξ)θα

and hence, taking the Fourier inversion of (2), we get∫∫
Y×RN

ei〈x
′,θ〉a(x, ξ + θ)u(x′) dx′ dθ ∼

∑
α

1

α!

∫∫
Y×RN

ei〈x
′,θ〉i∂αξ a(x, ξ)θαu(x′) dx′ dθ

= (2π)n
∑
α

(−∂αx′)
α!

(i∂ξ)
αa(x, ξ)|x′=0

= (2π)na(0, y, ξ)

+ (2π)n
∑
α 6=0

(−∂αx′)
α!

(i∂ξ)
αa(x, ξ)|x′=0.

One has(
(y, ξ) 7→ (2π)n

∑
α 6=0

(−∂αx′)
α!

(i∂ξ)
αa(x′, y, ξ)|x′=0

)
∈ Sm+δ+n−2N

4
−ρ

ρ,δ (Y ×RN)

which is 0 in the quotient space S
m+n−2N

4
ρ,δ (Y ×RN)/S

m+δ+n−2N
4
−ρ

ρ,δ (Y ×RN) and hence

so is a. �

It’s tempting to define the principal symbol of an element of Imρ,δ(X, Y ) to be an

element of S
m+n−2N

4
ρ,δ (Y × RcodimY )/S

m+δ+n−2N
4
−ρ

ρ,δ (Y × RcodimY ), but we need to deal

with the transformation law (1) first.

Every linear phase ϕ induces a fiberwise isomorphism

κϕ : Y ×RcodimY → N∗Y

(x, θ) 7→ dxϕ(x, θ).

Example 3.2. If the conormal bundle is nontrivial then κϕ is clearly not an isomor-

phism of vector bundles. I think this is true for the Möbius band in R3 but I haven’t

checked it.

Let us identify Y ×RcodimY with N∗Y using κϕ1 , so view symbols as functions on

N∗Y . Suppose that we transform ϕ1 to ϕ2 by ψ, say ψ(x)θ2 = θ1. Then, if (a1, ϕ1)

and (a2, ϕ2) define the same oscillatory integral, the transformation law (1) gives

a2(x, θ2) = a1(x, ψ(x)θ2)| detψ(x)| = a1(x, θ1)| detψ(x)|.
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Now we get rid of the Jacobian determinant. Fix ϕ(x, θ) = 〈Φ(x), θ〉, and recall

that Φ is a submersion near Y . Therefore the pullback distribution Φ∗δ, δ the Dirac

distribution at 0 is well-defined. In local coordinates y, Φ∗δ is just |dΦ(y)|−1
∏

j dyj
(Theorem 6.1.3 in Hörmander’s big book) which clearly transforms like a density on Y .

Since RcodimY comes with the Lebesgue density dV =
∏

j dθj, for every linear phase ϕ

with critical manifold Y we get a density Φ∗δ dV on Y ×RcodimY . Then

D = (κϕ)∗(Φ
∗δ dV )

is a density on NY .

Let ϕj(x, θ) = 〈Φj(x), θ〉 be linear phases with critical manifold Y which induce

densities Dj. Suppose Φ2 = ψtΦ1. The transition map κ(y, θ) = (y, ψ−1(y)θ) satisfies

κ∗a2 = | detψ|a1, but we also have κ∗D2 = | detψ|−2D1. That is,

κ∗a2
√
D2 = a1

√
D1.

Thus a1
√
D1 and a2

√
D2 are the same half-density, namely a bundle map

a
√
D ∈ Sm+n/4

ρ,δ (N∗Y → Ω1/2).

The fact that the symbol order is now independent of codimension is the other reason

we defined Imρ,δ(X, Y ) so strangely.

Theorem 3.3. Let Y ⊆ X be a closed embedding of codimension N . Let 1−ρ ≤ δ < ρ,

and choose a linear phase ϕ on X×RN with critical manifold Y . Let Imρ,δ(X, Y ) be the

set of all distribution half-densities on X modulo C∞(X) which are smooth on X \ Y
and are defined by oscillatory integrals

Ta(x) = (2π)−
n+2N

4

∫
N∗xY

eiϕ(x,θ)a(x, θ) dθ,

where a is a symbol of class S
m+(n−2N)/4
ρ,δ (N∗Y → Ω1/2) and the volume form eiϕ(x,θ) dθ

is defined by identifying the conormal space N∗xY with RN using the isomorphism

θ 7→ dxϕ(x, θ). Then the quantization map

T :
S
m+n−2N

4
ρ,δ (N∗Y → Ω1/2)

S
m+δ+n−2N

4
−ρ

ρ,δ (N∗Y → Ω1/2)
→

Imρ,δ(X, Y )

Im+δ−ρ
ρ,δ (X, Y )

is an isomorphism of vector spaces.

Proof. We just need to check that the above construction is invariant under changes of

coordinates in X. This is just a consequence of the chain rule for half-densities used a

bunch of times and not very interesting, so I’ll omit it (it’s page 119 in Hörmander’s

paper). �
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Definition 3.4. With everything as in the previous theorem, we say that

a ∈
S
m+n−2N

4
ρ,δ (N∗Y → Ω1/2)

S
m+δ+n−2N

4
−ρ

ρ,δ (N∗Y → Ω1/2)

is the principal symbol of a distribution half-density A if Ta = A.

4. Wavefront sets

Some harmonic analysis review: sheet music tells us, for each time t ∈ R, the

amplitude (mezzoforte, pianissimo, etc.) that each frequency (C], F , etc.) should

take at time t. This specifies a wave (i.e. a function) but in an overdetermined way, by

the uncertainty principle. Still, it’s often helpful to pretend as though a distribution

u on R really is a function on T ∗R 3 (t, τ); namely, u(t, τ) denotes the amplitude of

the note of pitch τ at time t. Wavefront sets are an example of this approach, where

we are interested in both singularities in time and frequency.

Recall that the singular support of a distribution u only locates its singularities in

time, and is defined by

sing suppu =
⋂

ϕu∈C∞
{x ∈ X : ϕ(x) = 0}

where ϕ ranges over cutoffs. That is, if ϕ cuts off u to a smooth function, then all

the singularities of u must be in the closed set {ϕ = 0}. The idea is that “applying a

pseudodifferential operator to a distribution is just like multiplying it in time-frequency

space by the symbol”, so we should be testing u against pseudodifferential operators

that are cutoffs in time-frequency, rather than just cutoffs in time.

Now let A be a pseudodifferential operator of proper support and order 0 on X, and

principal symbol a. Briefly we write A ∈ L0. Recall that the characteristic set of A is

γ(A) = {(x, ξ) : T ∗X \ 0 : lim inf
t→∞

|a(x, tξ)| = 0}.

Thus γ(A) is a conic subset of T ∗X, which “motivates” why we care about cone

bundles. But it doesn’t, really – why don’t we just mod out by the R+ action on

T ∗X \ 0, since γ(A) is clearly invariant under that action, and we only care about the

directions of the covectors in γ(A), rather than their magnitudes. Seriously, what is

Hörmander doing here??

Definition 4.1. Let u be a distribution on X, and define the wavefront set of u to be

WF (u) =
⋂

Au∈C∞
A∈L0

γ(A).
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Then WF (u) is the intersection of closed conic sets and so is a closed conic set –

but it’s probably more helpful to think of as a closed subset of the cosphere bundle

(T ∗X \ 0)/R+.

Theorem 4.2. Let p : T ∗X → X be the natural projection. Then for every distribution

u,

p∗(WF (u)) = sing suppu.

Moreover, if x ∈ sing suppu, then the fiber WFx(u) of WF (u) at x is the largest cone

Γ in T ∗xX such that for every cutoff ϕ to a neighborhood of x, there exists N > 0 such

that for every ξ ∈ Γ,

|ϕ̂u(tξ)| & 〈tξ〉−N

as t→∞.

Here and always 〈ξ〉 =
√

1 + ξ2 is the Japanese angle bracket of ξ. I leave the proof

for Ely to cover (or omit) next time. Let me just finish the talk with two examples.

Example 4.3. The term “wavefront set” derives from the following example. The

Dirac measure δ on Rd has

WF (δ) = T ∗0 Rd \ 0.

To see this, we first note that clearly sing supp δ = {0}. Taking the Fourier transform

we get δ̂ = 1, which doesn’t decay in any direction, so every direction is included in

the wavefront set.

If u is the solution of the wave equation with u(0) = δ and u′(0) = 0 then u is

supported in the lightcone {(t, x) ∈ R1+d : x2 = t2}. (I think if d = 0 mod 2 then

u is not literally the surface measure on the lightcone, because Huygens’ principle is

weak in this case.) Thus the lightcone is the wavefront of u. It is also the projection

of WF (u), which is the Hamiltonian flowout of WF (δ).

Example 4.4. Let U be an open subset of Rd such that ∂U is a smooth manifold,

and let u = 1U . Then WF (u) is the conormal bundle of ∂U . Indeed, it is clear

that sing suppu = ∂U , and since ∂U is a smooth manifold, to compute WFx(u)

we can flatten ∂U at x to assume that ∂U is a hyperplane {y = 0}, in which case

u(x, y) = H(y). If we consider Schwartz cutoffs f(x, y) = g(x)h(y) then we get

ûf(ξ, η) = ĝ(ξ)Ĥh(η)

If ξ 6= 0 then we clearly get decay in ûf(tξ, tη) as t→∞ since ĝ is a Schwartz function

and

Ĥh(η) . Ĥ(η) = δ(η) +
i

πη
∼ 1/η

(in the sense of Cauchy principal value distributions). Meanwhile if ξ = 0 then

ûf(tξ, tη) = ĝ(0)Ĥh(tη) ∼ 1/η, so we get a singularity.
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