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1. Geodesic laminations and the ∞-Laplacian

I’ll be saying a lot about PDE techniques for studying laminations, and the simplest kind of
laminations are geodesic laminations, so let’s start there.

Definition 1.1. A geodesic lamination in a Riemannian manifold M is a nonempty closed subset
of M which has been partitioned into complete geodesics, called leaves.

A cross-section of a geodesic lamination could be homeomorphic to an arbitrary closed subset of
R and we know that typically, this means it will look like a Cantor set.

Geodesic laminations typically show up whenever you are dealing with maps which minimize their
Lipschitz constant. The Thurston school’s approach to Teichmüller theory deals with minimizing
Lipschitz maps between hyperbolic surfaces. In other applications of minimizing Lipschitz maps,
such as to optimal transport, or to Farre–Landesberg–Minsky’s analysis of horocycle orbit closures,
we want to look at scalar-valued minimizing Lipschitz functions, u : M → R. In that case,
Lip(u) = ∥ du∥L∞ and this suggests that we can find a minimizing Lipschitz map by minimizing
∥ du∥Lp and taking p → ∞. In fact, if u minimizes ∥du∥Lp it solves the p-Laplacian,

0 = d∗(|du|p−2 du) = (p− 2)| du|p−4⟨∇2u,du⊗ du⟩+ |du|p−2∆u.

Renormalizing and taking p → ∞ we get the ∞-Laplacian,

0 = ⟨∇2u,du⊗ du⟩
and the (viscosity) solutions of this PDEminimize their Lipschitz constant. Using viscosity solutions
techniques, one can show:

Theorem 1.2 (Crandall and Daskalopoulos–Uhlenbeck). Let u be ∞-harmonic. If | du| attains its
maximum, then it does so on a geodesic lamination λ, and for every leaf γ ⊆ λ, u ↾ γ is an affine
function with slope Lip(u).

Corollary 1.3. Let M be closed, and let ρ be a homotopy class of maps M → S1. Then the
immersed complete curves γ such that for every minimizing Lipschitz map f in ρ, f ↾ γ is an affine
function with slope Lip(f), form a geodesic lamination.

λ is called the canonical lamination maximally stretched by ρ. To see why if u ↾ γ is an affine
function with slope Lip(u), that curve should be a geodesic, suppose that γ has endpoints x, y,
then

len(γ) =
1

Lip(u)

∫
γ
du =

1

Lip(u)

∫
[x,y]

du = dist(x, y).

Specializing to maps from a closed surface M to S1, let

dvq := | dup|p−2 ⋆ dup

where 1/p+ 1/q = 1. Thus dvq is closed, so we get a function vq. Moreover

d∗(|dvq|q−2 dvq) = d∗(|dup|(p−1)(q−2)+(p−2) ⋆ dup) = d2up = 0
1
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so vq is q-harmonic. As q → 1, vq → v in L
3/2
loc , where the level sets ∂{v > t} of v are all leaves of

the canonical lamination λ. In other words, |dv| is a transverse measure to λ.
Thurston and Gueritaud–Kassel have constructed a canonical maximally stretched lamination

for certain homotopy classes of maps between closed hyperbolic surfaces, but the proof is com-
pletely different, based on triangle comparison arguments. The analogue of the p-Laplacian for
approximating minimizing Lipschitz maps between manifolds is the Schatten p-Laplacian,

D∗
u((dudu

†)
p−2
2 du) = 0.

We can’t generalize Theorem 1.2 because the Schatten p-Laplacian is a system of PDE, so viscosity
solutions don’t make sense. Daskalopoulos–Uhlenbeck have shown, however, that we can use the
above argument to construct a transverse measure on Thurston’s canonical lamination and this
has a few applications in Teichmüller theory. However, this line of research seems really hard to
make progress on, because the Schatten p-Laplacian is arguably beyond the current methodology
for studying elliptic PDE.

2. Functions of least gradient

Going back to maps from a surface to S1 for the time being, let’s more carefully scrutinize more
carefully the transverse measure |dv|. We got v as a limit of q-harmonic functions vq and those all
minimize

∫
|dvq|q dV . So v minimizes

∫
|dv| dV .

What do I mean by |dv|? W 1,1 does not admit a weakstar topology, so we don’t expect v ∈ W 1,1

(in fact, if M is a closed, negatively curved, surface, then v /∈ W 1,1). So |dv| is just a Radon
measure, not a function. The space of functions with

∫
| dv|dV < ∞ is called BV for bounded

variation.

Definition 2.1 (de Giorgi and Miranda). A function v ∈ BV has least gradient if u minimizes∫
|dv| dV subject to a boundary condition.

Let’s look at least gradient functions on any Riemannian manifold M of dimension d ≤ 7, not
just a surface. The most important property they have is that, because of the coarea formula,∫

M
| dv|dV =

∫ ∞

−∞
Area(∂{v > t}) dt,

the level sets ∂{v > t} are area-minimizing. Because of this property, functions of least gradient
got a lot of attention from the Italian GMT school in the 1960s. This culminated in Bombieri–de
Giorgi–Giusti’s refutation of the Bernstein conjecture.

Because BV is nonreflexive, solvability of the Dirichlet problem for a function of least gradient,
even in the simplest case that the domain is a disk in R2, is quite subtle. Only over the past decade
(Jerrard–Moradifam–Nachman, Górny, B) have we obtained satisfactory results. These proofs
rely on the local GMT of minimal hypersurfaces (eg, the maximum principle for area-minimizing
currents).

Definition 2.2. A lamination λ in M of codimension 1 is a nonempty closed set suppλ ⊆ M ,
which is partitioned into complete hypersurfaces called leaves, and a maximal atlas of Lipschitz
charts in which suppλ takes the form K × (0, 1)d−1 where K is a closed subset of R, such that
every leaf takes the form {k} × (0, 1)d−1 where k ∈ K. The lamination λ is minimal if every leaf
of λ has mean curvature 0.

So we imposed a Lipschitz regularity condition. One can show that every geodesic lamination in
a surface satisfies this condition but in general you have to separately impose it.

Theorem 2.3 (B). Let S be a nonempty set of disjoint injectively immersed minimal hypersurfaces
of locally uniformly bounded II and closed union. Then S is the set of leaves of a lamination.
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Solomon proved this for foliations, using the Harnack inequality, and Colding–Minicozzi sketched
the idea of how to extend the argument to laminations. The II requirement is caused by subtleties of
varifold convergence (and it might be possible to remove it with more work), but in our application
it will always be easy to check.

Theorem 2.4 (B). Let v ∈ BVloc(M) be nonconstant. Then v locally has least gradient iff the level
sets of v form a minimal lamination λ whose leaves have locally uniformly bounded II.

In particular, |dv| is a transverse measure to λ.
Most of the work of the proof is dealing with difficulties of BV functions, but conceptually the

plan of the proof of Theorem 2.4 is pretty simple. If v is assumed to have least gradient, we want
to check the hypotheses of Theorem 2.3. Since the level sets of v are minimal hypersurfaces, we can
use a maximum principle argument to ensure that they are all disjoint. Also, by assumption we
can find an open cover in which every level set of v is area-minimizing, hence stable and of bounded
area; we then use Schoen–Simon’s estimates on stable minimal hypersurfaces to get the required
bound on II. Conversely, if the level sets of v are assumed to be a minimal lamination, we can use
the bound on II to find an open cover by sets in which the level sets are all area-minimizing, and
then use the coarea formula.

Problem 2.5. Suppose that v is undergoing total variation flow. Under what conditions on the
boundary and initial data do the level sets of v form a laminations of hypersurfaces, each undergoing
mean curvature flow?

3. The canonical calibrated lamination

Suppose that M is closed and oriented.

Definition 3.1 (Harvey–Lawson). A calibration of codimension 1 is a closed d − 1-form of L∞

norm 1. If F is a calibration, a hypersurface N is F -calibrated if F pulls back to the area form on
N .

A calibration is basically a “certificate” that a hypersurface is area-minimizing. Indeed, if a
closed hypersurface N is F -calibrated and N ′ ∼ N ,

Area(N) =

∫
N
F =

∫
N ′

F ≤ Area(N ′).

This is just the same argument as in the Lipschitz maps case. If you go on Pawn Stars to try to sell
a minimal hypersurface N and you don’t have a calibration for N , Rick Harrison will call up one
of his buddies who will say that it’s not area-minimizing. “This just looks like a critical point of
the area functional, best I can do is 50 bucks.” But if you try to sell Rick N and and a calibration
for N , he’ll be very impressed.

We are going to use Theorem 2.4 to get a generalization of the canonical maximally stretched
lamination, and in this theorem we set for every ρ ∈ Hd−1(M,R),

∥ρ∥∞ := inf
[F ]=ρ

∥F∥L∞ .

Theorem 3.2 (B). Let ρ ∈ Hd−1(M,R) and ∥ρ∥∞ = 1. Then the immersed complete hypersurfaces
N such that for every calibration F in ρ, N is F -calibrated, form a minimal lamination λρ.

λρ is the canonical lamination calibrated by ρ. Let’s look at the proof when d = 2 for simplicity.

Let F be a calibration, so F = du for some Lipschitz function u on M̃ such that Lip(u) = 1. Since
∥ρ∥∞ = 1, u has minimizing Lipschitz constant, so we’re actually giving a new proof of Theorem
1.2, but the proof we’re about to give is pretty different (since no viscosity solutions are available
in general).
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ρ might not contain any continuous calibrations (at least I don’t know that!) so we have to use
continuity of u as a proxy for continuity of F . This is a key difficulty of the proof, and in general
it comes down to Anzellotti’s theory of compensated compactness for BV , but let’s pretend that
F is continuous.

Let γ be an immersed complete curve such that u ↾ γ is affine of slope 1. Thus γ is F -calibrated
and so is a geodesic. If another such curve intersects γ at a point x, then they have the same tangent
vector F ♯(x), so by the maximum principle they are equal. Therefore we can use Theorem 2.3 to
show that the set of all such curves is a geodesic lamination λF , if such a curve exists. Putting this
aside for now...

To build λρ we take the intersection of the sets of leaves of the λF where F ranges over all
calibrations. We have to show this intersection is nonempty and to do this we use the stable norm
on Hd−1(M,R),

∥α∥1 := inf
[N ]=α

Area(N).

This is the dual norm of ∥ · ∥∞, and it doesn’t have to be strictly convex. We look at the dual flat

ρ∗ := {α ∈ Hd−1(M,R) : ⟨ρ, α⟩ = ∥α∥1 = 1}.
Given α ∈ ρ∗, we can find a function v of least gradient which is “suitably twisted by α” in the
sense that for any F , ∫

M
F ∧ dv = ⟨ρ, α⟩ = ∥α∥1 =

∫
M

|dv| dV,

and apply Theorem 2.4 to obtain a lamination whose leaves are all then F -calibrated for every F .

Theorem 3.3 (B). ρ∗ is the set of homology classes of projective measured sublaminations of λρ.

This falls out from the previous proof. The ergodic theory of laminations then implies that ρ∗

is a convex polytope whose vertices correspond to ergodic sublaminations of λρ. Furthermore, a
vertex α has rational direction iff it corresponds to a closed hypersurface.

Corollary 3.4. If the stable norm ball is strictly convex, then there exists a uniquely ergodic
minimal lamination without a closed leaf.

Proof. Let α ∈ Hd−1(M,R) have ∥α∥1 = 1 and irrational direction, and choose ρ so that ρ∗ = {α}.
Then λρ only admits one measured sublamination κ, and κ is as desired. □

This suggests that it would be nice to have topological criteria for the stable norm ball to be
strictly convex, and the canonical lamination gives us a few of these, and here is one, which was
proposed by Auer–Bangert in a research announcement 25 years ago.

Corollary 3.5. If [α, β] ⊂ Hd−1(M,R) is a line segment in the stable unit sphere, then the inter-
section product of α, β is 0.

Proof. There exists ρ ∈ Hd−1(M,R) such that [α, β] ⊆ ρ∗. So there are measured sublaminations
κα, κβ ⊆ λρ which represent α, β. So κα, κβ do not intersect, except if they have common leaves. □

4. The earthquake norm

Here’s a definition of the earthquake norm that doesn’t mention earthquakes. Let M be a closed
hyperbolic surface, and let F be the sheaf of Killing fields on M . Then the sheaf cohomology,
H1(M,F ), is canonically isomorphic to the set of measured geodesic laminations in M . The
earthquake norm of a cohomology class is the mass of the corresponding lamination, and the
intersection number of a pair of classes is the intersection number of the corresponding laminations.

After proving Corollary 3.5, I looked at the arXiv, and to my surprise, the following theorem
had been posted a few weeks prior.



FUNCTIONS OF LEAST GRADIENT AND AREA-MINIMIZING LAMINATIONS 5

Theorem 4.1 (Huang–Ohshika–Pan–Papadopoulos). If [α, β] ⊂ H1(M,F ) is a line segment in
the earthquake unit sphere, then the intersection number of α, β is 0.

In fact, there are a number of other theorems suggested by Auer–Bangert which can be proven
using the canonical calibrated lamination. Each of these has an analogue proven by Thurston’s
school for the earthquake norm proven using the canonical maximally stretched lamination. The
remarkable thing is that these theories seem to have been developed totally independently. There’s
no hint of the Thurston school’s work or the canonical lamination in Auer–Bangert’s work, and
conversely much of the Thurston school’s work predates Auer–Bangert. For example:

Theorem 4.2 (Thurston school). Every maximal flat of the earthquake unit sphere is a polytope.

The point of the proof is to think of a maximal flat as the set of homology classes of measured
sublaminations of some lamination λ with mass 1. In the case of the stable norm, λ is canonical, but
I don’t know that for the earthquake norm, and one issue here is that we don’t have a completely
satisfactory answer to:

Problem 4.3 (Pan–Wolf). What is the correct notion of exponential map for the Thurston asym-
metric metric on Teichmüller space?
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