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1. Motivation from spectral theory

1.1. Gamow’s resonant states. Consider an α-particle – that is, a He-4 nucleus that was
just ejected from the nucleus of a heavy atom (eg, of U-238). The physicist Gamow thought
of the α-particle as a wavefunction u, it solves a Schrödinger equation

(i∂t + P )u = 0 (1.1)

on all of Rd, where P is uniformly elliptic on {|x| & 1} (and in fact converges to a rescaled
Laplacian near infinity) but may degenerate near the origin due to effects of the strong and
electromagnetic forces near the U-238 nucleus.

According to quantum mechanics, steady states of (1.1) are eigenfunctions of P with L2

norm one. But P is basically just the Laplacian, so it has essential spectrum, and so (1.1)
has no steady states. Gamow got around this conundrum by considering functions which are
formally eigenfunctions of P , as detected by the resolvent of P . Recall that the resolvent of
an operator P is given by

RP (z) = (P − z2)−1

and, using the uniform ellipticity of P , it admits an analytic continuation to C minus a
locally finite set of poles [DZ19].

Definition 1.1. A resonance of P is a pole of RP (counted with multiplicity).
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Resonances z corresponds to particles, called resonant states, which are sort of like formal
eigenfunctions of P with eigenvalue z2. Such a particle has energy Re z and half-life−h/ Im z.
(Here h := ~/

√
2m where m denotes mass.)

In general P may admit lots of resonant states, but if − Im z � h, they are not very
useful, as they are particles of very short half-life, and there are infinitely many distinct such
particles. We want a condition which guarantees that there’s only finitely many resonant
states worth caring about.

Definition 1.2. P has an essential spectral gap of size β ≥ 0 if there are only finitely many
resonances with Im z ≥ −β.

1.2. The Dyatlov–Zahl theorem. Taking h → 0 is called the semiclassical limit and
corresponds to approximating the quantum world by its classical counterparts. In that case
particles are expected to move along geodesics, if P is the Laplace-Beltrami operator of
some Riemannian metric. So the study of resonant states would be especially interesting if
we assumed that P was the Laplace-Beltrami operator of a negatively curved manifold, since
then the geodesic flow would be chaotic: two particles could start with very similar positions
and momenta, and end up in very different places in an exponentially small timeframe.

Let Γ be a “nice” discrete subgroup of the properly orthochronous Lorentz group SO+(1, d+
1). This is the group of all spacetime symmetries which preserve orientation and the arrow

of time. In particular it acts on the future unit hyperboloid {t =
√
|x|2 + 1} by isometries.

But that hyperboloid is hyperbolic space Hd+1. So we can take the manifold

M := Hd+1/Γ

whose fundamental group is then Γ.
Let’s assume that M has infinite ends. It’s negatively curved, so its geodesic flow is chaotic,

but also some geodesics are trapped, while some escape to infinity. Thus we have a highly
unpredictable geodesic flow, and the geodesics which do escape correspond to trajectories of
resonant states. So, if we understand the group Γ, we should be able to say some interesting
things about the resonant states.

Dyatlov–Zahl made the above heuristics rigorous using Hörmander’s theory of Fourier
integral operators and singularity propagation [DZ16].

Theorem 1.3 (Dyatlov–Zahl ’16). Let Γ be a convex cocompact discrete subgroup of SO+(1, d+
1). Let ΛΓ be the boundary of an orbit of Γ in the sphere at infinity Sd := ∂Hd+1. Let

Bχ,hf(y) := hd/2
∫
Sd
|y − x|2i/hχ(x, y)f(x) dx

where χ has compact support in the off-diagonal of (Sd)2. If

‖1ΛΓ+BhBχ,h1ΛΓ+Bh‖L2(Sd)→L2(Sd) .χ h
β,

then the Laplacian on Hd+1/Γ has an essential spectral gap ≥ β.

Notice that Bχ,h formally resembles the Fourier transform, since

|y − x|2i/h = eiΦ(x,y)/h

where Φ(x, y) = log |x− y| is a sort of “generalized inner product” which degenerates away
from the support of χ. We will focus on this model case in the sequel. Also notice that ΛΓ

is a fractal (topologists love these sets).
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2. The fractal uncertainty principle

2.1. Statement of the theorem. What does it mean for a set to be fractalline? What do
we mean when we say that ΛΓ is a fractal? Well, we want some sort of self-similarity, and
self-similarity at all scales is what the Ahlfors-David condition says:

Definition 2.1. A compact set X ⊂ Rd of Hausdorff dimension δ is Ahlfors-David regular
if its Hausdorff measure µ satisfies

µ(B(x, r)) ∼ rδ.

If Γ is as in the Dyatlov–Zahl theorem, then ΛΓ is δ-regular for some δ ∈ (0, δ).

Theorem 2.2 (fractal uncertainty principle). Let X be δ-regular, Xh := X +Bh, and

Fhf(y) := hd/2
∫
Rd

e−ix·y/hf(x) dx.

Assuming ???, there exists β ≥ β0 such that

‖1XhFh1Xh‖L2(Rd)→L2(Rd) . hβ.

Here’s how to interpret this theorem. Suppose that f rapidly decays away from a small
neighborhood Xh of X. Then 1Xh is basically just f , and after we take the Fourier transform
Fhf ≈ Fh1Xhf , the definition of the fractal uncertainty principle indicates that what’s left
must avoid Xh, in the sense that its contraction with 1Xh is tiny in L2.

OK so we need to say what ??? and β0 are. First observe that

‖1XhFh1Xh‖ ≤ ‖1Xh‖2
L∞‖Fh‖L2→L2 ≤ 1 = h0

by Plancherel’s theorem and Hölder’s inequality. So if FUP is going to be an interesting
theorem, we must have β0 ≥ 0.

We have Xh ≈
⋃N
n=1B(xn, h) where {xn} is a maximal O(h)-separated subset of X. So

|Xh| ∼ Nhd, but µ(B(xn, h)) ∼ hδ and µ(X) ∼ 1, hence N ∼ h−δ and so

|Xh| ∼ hd−δ.

In particular we have

‖1Xh‖L2 . h
d−δ

2 ,

we so

‖1XhFh1Xh‖ ≤ ‖1Xh‖L∞→L2‖Fh‖L1→L∞‖1Xh‖L2→L1 ,

≤ ‖1Xh‖2
L2‖Fh‖L1→L∞

. hd−δh−
d
2 = h

d
2
−δ.

Thus we have

β0 := max

(
0,
d

2
− δ
)
,

the so-called Patterson-Sullivan exponent .
Now, what is ???:

• Dyatlov–Zahl ’16 [DZ16]: d = 1, δ = 1
2
.

• Bourgain–Dyatlov ’18 [BD18]: d = 1, 1
2
≤ δ < 1.

• Dyatlov–Jin ’18 [DJ18]: d = 1, 0 < δ ≤ 1
2
.
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• Han–Schlag ’20 [HS20]: d
2
≤ δ < d, X =

∏
nXn where Xn ⊂ R is δn-regular,

δn ∈ (0, 1).
• Cladek–T. Tao ’21 [CT21]: d odd, δ = d

2
.

• Cohen ’22 [Coh22]: d = 2, 1 ≤ δ < 2, X is an arithmetic Cantor set (to be defined
later) which does not contain a line.
• Backus–Leng–Z. Tao ’23: 0 < δ ≤ d

2
and X is not orthogonal to itself (to be defined

later).

Roughly speaking there are three cases:

• The case 0 < δ ≤ d
2

is proven using the self-similarity to get lots of cancellations in
the Fourier phase; this is called Dolgopyat’s method . We’ll prove it in detail later.
• The case δ = d

2
is proven using additive combinatorics.

• The case d
2
≤ δ < d is proven using complex analytic or algebro-geometric methods.

This case is hardest IMO.

2.2. Some examples. The above theorem is not quite sharp but there are some improve-
ments that we cannot make to it.

Example 2.3. Let X = [−3, 3], d = 1. Then e−x
2/2 is microlocalized to X at scale h (if h

is small enough), so we cannot take δ = d.

Example 2.4. X = {0}. Then e−|x|
2/(2h) is microlocalized to X at scale h, so we cannot

take δ = 0.

Example 2.5. LetX be the union of two orthogonal line segments, d = 2. Then e−x
2/2−y2/(2h)

is microlocalized to the horizontal line segment and its Fourier transform is microlocalized
to the vertical part. So X cannot have too much “linearly independent additive structure”,
whatever on god’s green earth that means.

3. Model problem: Arithmetic Cantor sets

A lot of the ideas of the proof already appear in the case of so-called arithmetic Cantor
sets, which are so self-similar that the technicalities simplify a lot.

Definition 3.1. Let L ≥ 3 be an integer and A ⊂ {1, . . . , L}d be a nonempty proper subset,
which we think of as labelling the L-adic subcubes of a given cube. The arithmetic Cantor set
generated by A is defined by repeatedly splitting a cube into L-adic subcubes, and keeping
those closed subcubes which belong to A.

Example 3.2. The middle-thirds Cantor set is arithmetic, with L = 3 and A = {1, 3}. If
θ ∈ (0, 1) is irrational, the middle-θ Cantor set is not arithmetic.

At scale N−1 := L−k, an arithmetic Cantor set looks like N−1Ck,A where

Ck,A := {a0 + a1L+ · · ·+ akL
k : ai ∈ A}.

In partiular it has dimension δ := log cardA
d logL

. Thus, the arithmetic Cantor set satisfies the

fractal uncertainty principle if there exists ε0 > 0 such that the discrete Fourier transform

FNf(ξ) := N−d/2
∑

x∈{1,...,N}d
exp

(
2πi

x · ξ
N

)
f(x)
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satisfies
‖1Ck,AFN1Ck,A‖`2→`2 . N−β−ε0 (3.1)

where β := max(0, d
2
− δ) is the Patterson-Sullivan exponent.

Proposition 3.3. Suppose that δ ∈ (0, d/2] and there exist x, x′, ξ, ξ′ ∈ A such that 〈x −
x′, ξ − ξ′〉 6= 0 modulo N . Then there exists ε0 > 0 such that the arithmetic Cantor set
satisfies the fractal uncertainty principle (3.1).

Proof. Since δ ≤ d/2, if we can beat the exponent d
2
− δ, then we automatically beat the

Patterson-Sullivan exponent β.
We now observe the following induction on scale inequality:

‖1Ck1+k2,A
FN1N21Ck1+k2,A

‖ ≤ ‖1Ck1,A
FN11Ck1,A

‖‖1Ck2,A
FN21Ck2,A

‖. (3.2)

It follows from the fact that if we have u, v ∈ `2([N ]d) and ξ1, x2 ∈ [N ]d, we can define
uξ1 ∈ `2([N2]d) and vx1([N1]d) by uξ1(ξ2) := u(ξ1 + N1ξ2) and vx2(x1) := v(x2 + N2x1), and
then we have the decimation formula

〈FNu, v〉 =
∑

ξ1∈[N1]d

∑
x2∈[N2]d

exp

(
2πi

x2 · ξ1

N

)
FN2uξ1(x2)FN1vx2(ξ1).

The decimation formula is used in the Fast Fourier Transform algorithm to reduce the com-
putation of a Fourier transform to the computation of a Fourier transform over a small cyclic
group [DPV08, Chapter 2]. We omit the proof of the decimation formula, but see [DJ17,
Lemma 3.1]. Taking suppu, supp v ⊆ Ck1+k2,A, we get suppuξ1 ⊆ Ck1,A and supp vx2 ⊆ Ck2,A.
So by Cauchy-Schwarz,

|〈FNu, v〉|2 ≤

 ∑
ξ1∈Ck1,A

∑
x2∈Ck2,A

|FN2uξ1(x2)|2
 ∑

ξ1∈Ck1,A

∑
x2∈Ck2,A

|F∗N1
vx2(ξ1)|2


≤ ‖1Ck2,A

FN21Ck2,A
‖2‖u‖2‖1Ck1,A

FN11Ck1,A
‖2‖v‖2,

which proves (3.2).
In particular, if there exists ε1 > 0 and a scale L−k such that

|1Ck,AFN1Ck,A‖ ≤ (1− ε1)N−δ−
d
2 (3.3)

then by scale-invariance this estimate holds for scale L−1, and by (3.2),

‖1Ck,AFN1Ck,A‖ ≤ ‖1C1,A
FL−11C1,A

‖k ≤ (1− ε1)kN−δ−
d
2

and the claim follows with
ε0 := − logL(1− ε1).

So let’s suppose that (3.3) fails, so at every L-adic scale,

‖1Ck,AFN1Ck,A‖ = N−δ−
d
2 .

However, we have

‖1Ck,AFN1Ck,A‖ ≤ ‖1Ck,AFN1Ck,A‖HS =
(cardA)k

Nd/2
= N−δ−

d
2

where ‖ · ‖HS denotes the Hilbert-Schmidt norm (the `2 norm of the vector of generalized
eigenvalues) and ‖ · ‖ denotes the operator norm (the `∞ norm on generalized eigenvalues).
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Thus the `2 and `∞ norms of eigenvalues are the same, so P = 1Ck,AFN1Ck,A has rank 1. In
particular, all 2× 2 minors of P vanish.

However,

Px,ξ = N−d/21Ck,A(x)1Ck,A(ξ) exp

(
2πi

x · ξ
N

)
so for every x, x′, ξ, ξ′ ∈ Ck,A,

det

[
exp(2πix · ξ/N) exp(2πix′ · ξ/N)
exp(2πix · ξ′/N) exp(2πix′ · ξ′/N)

]
= 0

or equivalently,

exp

(
2πi
〈x− x′, ξ − ξ′〉

N

)
= 1.

In particular x−x′ must be orthogonal to ξ− ξ′ modulo N , a contradiction. Therefore there
is a scale at which (3.3) holds. �

Let’s recap the strategy here:

(1) By working in the right norm, we witness the part of the Patterson-Sullivan exponent
that we’re trying to beat trivially, and we just need to get an improvement in that
norm.

(2) We discretize the fractal, and make the discretization so self-similar that if we get a
multiplicative gain at one scale, we get an exponential gain at all scales.

(3) If we cannot get a multiplicative gain at one scale, then the behavior of the fractal
becomes highly constrained, and violates the nonorthogonality assumption.

These three steps are exactly the steps that work in the general case! But they become
a lot more technical, essentially because a general Ahlfors-David set is only self-similar on
average, rather than the perfect self-similarity of the arithmetic Cantor set.

Side remark: There’s lots of interesting problems which have only been addressed in the
self-similar case. For example we have [EH21] the following fractal uncertainty principle,
which is much stronger than the Dyatlov–Jin uncertainty principle with overwhelming prob-
ability:

Theorem 3.4. Let d = 1 and let A ⊆ [L] be drawn at random. Then with probability

≤ 3L exp(−L4ε

64
),

logN ‖1Ck,AFN1Ck,A‖ ≤ −max(0,
1

2
− 3

4
δ − ε). (3.4)

So it is natural to conjecture that for a “generic” Ahlfors-David set the improved bound
(3.4) holds. To my knowledge even formulating this precisely is wide open.

4. The Dyatlov–Jin uncertainty principle

Let’s prove the Dyatlov–Jin uncertainty principle.

Definition 4.1. A compact set X is nonorthogonal (to itself) on scales [h, 1] if for every
x0, ξ0 ∈ X and h < r1, r2 ≤ 1 there exist x1, x2 ∈ B(x0, r1) and ξ1, ξ2 ∈ B(ξ0, r2) such that

|(x1 − x2, ξ1 − ξ2)| & r1r2.

This condition is also called the nonconcentration property or the local nonintegrability con-
dition (LNIC).
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Example 4.2. Lots of sets are nonorthogonal:

(1) If d = 1, δ > 0, and X is δ-regular, then X is nonorthogonal.
(2) If Γ is a Zariski dense convex cocompact subgroup of SO+(1, d + 1), then ΛΓ is

nonorthogonal.
(3) If X is nonorthogonal, then Xh is nonorthogonal on scales [h, 1].
(4) One may check by hand, using self-similarity, that a Sierpinski carpet is nonorthog-

onal.

Theorem 4.3. Let X be nonorthogonal on scales [h, 1], and suppose that X is the support
of a doubling measure µ (doubling on scales [h, 1]). Let

Bhf(x) :=

∫
X

eix·ξ/hf(ξ) dµ(ξ).

Then there exists ε0 > 0 such that

‖Bh‖L2(µ)→L2(µ) . hε0 .

We apply this theorem with X replaced by Xh and µ(E) := hδ−d|X ∩ E|, which is a
doubling measure if X is δ-regular:

Corollary 4.4. If X is nonorthogonal and δ-regular, δ ∈ (0, d/2], then X satisfies the fractal
uncertainty principle.

4.1. Discretization of compactly supported doubling measures. Let X be a compact
set, which we will think of as equipped with a doubling measure µ. Also fix a parameter
L ≥ 3.

Definition 4.5. A discretization of a compact set X ⊆ Rd is a set V (X) = {Vn(X) : n ∈ Z}
of sets, where Vn(X) is a set of subsets of Rd, called tiles , such that:

(1) X =
⋃
{I ∩X : I ∈ Vn(X)} and the union is disjoint,

(2) For every I ∈ Vn(X) we have I =
⋃
k Ik for some Ik ∈ Vn+1(X).

In other words, the discretization turns the set X into the set of paths through a tree,
and the set of the nth level of vertices is Vn(X). If our discretization is “good” and µ is
doubling, then there should be some f(L) such that the measure of a child of a tile I should
be & f(L)µ(I). For example if µ is a δ-regular measure then f(L) = L−δ.

Example 4.6. The standard discretization V 0(X) is defined by letting V 0
n (X) be the set of

all L-adic cubes of side length L−n which intersect X. However, this discretization is not
very useful for our purposes because it doesn’t “see” the doubling nature of µ. For example,
we could choose X = [L−1, 1] and µ Lebesgue measure on X, then for L � 1, [0, 1] has
measure ∼ 1, but its child [0, L−1] has measure zero, despite intersecting X.

Example 4.7. If X is an arithmetic Cantor set, then X comes with its own natural choice
of discretization: Cn,A specifies a set of L-adic cubes of side length L−n, so let Vn(X) be the
set of all L-adic cubes specified by Cn,A. Note that this is just the standard discretization,
but it witnesses that µ is doubling, since each cube has measure Lδ times the measure of its
parent.

As it turns out, we can modify the standard discretization to get a measure for which the
above counterexample on the standard discretization fails:
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Proposition 4.8. Let L be a multiple of 103, and X a compact set. There exists a dis-
cretization V (X) such that for every tile I ∈ Vn(X), there exists an L-adic cube I0 ∈ V 0

n (X)
such that

I0(1− L−2/3) ⊆ I ⊆ I0(1 + L−2/3),

and there exists a point x0 ∈ I ∩X such that

dist(x0, ∂I) ≥ 1

10
L−2/3−n.

Proof. We’ll prove this for d = 1 for simplicity.
Let’s do it at scale L−n first. Let I ∈ V 0

n (X). We want to modify I to be a tile T so that
there exists x0 ∈ X ∩ T such that

dist(x0, ∂T ) ≥ 1

5
L−2/3−n. (4.1)

To do this, we start with setting T (I) := I for every I. We say that T is a predator if (4.1)
holds, dead if X ∩ T is empty, and otherwise prey .

We now iterate over all prey at scale L−n. If T is prey, all x ∈ T ∩X are within L−2/3−n/5
of the boundary. If x is close to an adjacent predator S, we feed a subinterval of T of size
L−2/3/2 to S, so that on that side, T no longer meets X. Otherwise, x is close to prey or a
dead tile, so we feed a subinterval of size L−2/3/2 of the prey or dead tile to T . Then either
T is a predator (because it ate one of its neighbors) or it is dead (its neighbors ate it). This
operation created no new prey, and removed at least one prey, so this process will stop.

After this procedure is complete, every tile is either a predator or dead. Let Vn(X) be the
set of predators. Since L is a multiple of 103 (in particular, L2/3/10 is an integer), it only
moved entire children of each tile, so the tree structure V 0

n (X) is preserved. It never added
or removed more than L−2/3/2 of the original interval to get the tile, plus L−5/3/2 from the
previous scale (which is negligible since L ≥ 103).

If d ≥ 2, we have notions of types of predator, where type k means that the tile has a
problem with its k-boundary. Then we induct backwards, eliminating tiles of type d− 1, ...,
1, 0 as above. (You pick up some small losses doing this, which is why the gain is of size
L−n−2/3/10 rather than L−n−2/3/5). We omit the details, because this is technical but the
basic idea is already there for d = 1. �

Given I ∈ Vn(X), we put a probability measure on the set {Ia : a ∈ A} of children of I,
namely Pr(a) := µ(Ia)/µ(I). Let Dµ be the doubling constant of µ, namely for every cube
I,

µ(2I) ≤ Dµµ(I).

Lemma 4.9. For any a,
Pr(a) ≥ D− log2(3L)

µ .

Proof. By definition of V (X), there exist cubes Ĩ ⊇ I and Ĩa ⊆ Ia such that Ĩ ⊆ 3LĨa. Then

µ(I) ≤ µ(Ĩ) ≤ D− log2(3L)
µ µ(Ĩa) ≤ D− log2(3L)

µ µ(Ia). �

Proposition 4.10. Suppose that X is the nonorthogonal support of a compactly supported
doubling measure µ and X is nonorthogonal. Given tiles I ∈ Vn(X) and J ∈ Vm(X), draw
children Ia, Ia′ and Jb, Jb′ independently at random, and let xa, xa′ , ξb, ξb′ be in their respective
tiles. The probability that

|(xa − xa′) · (ξb − ξb′)| ∼ L−n−m−4/3
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and
Ln+2/3|xa − xa′|, Lm+2/3|ξb − ξb′| ∼ 1

(meant in the limit as L→∞) is at least

ρ := D−4 log2(2L)
µ . (4.2)

Proof. By definition of V (X) and the fact that L ≥ 103, there exist x ∈ X ∩ I and ξ ∈ X ∩J
which are ∼ L−n−2/3 or L−m−2/3-interior to their tiles. By nonorthogonality there exist
x̃a, x̃a′ ∈ I ∩X of distance ∼ L−n−2/3 to x, and ξ̃b, ξ̃b′ ∈ Y ∩ J of distance ∼ L−m−2/3 to ξ,
such that

|(x̃a − x̃a′) · (ξ̃b − ξ̃b′)| & L−n−m−4/3.

In the other direction, Cauchy-Schwarz gives

|(x̃a − x̃a′) · (ξ̃b − ξ̃b′)| ≤ |x̃a − x̃a′ | · |ξ̃b − ξ̃b′ |
≤ ||x̃a − x|+ |x̃a′ − x|| · ||ξ̃b − ξ|+ |ξ̃b′ − ξ||
. L−n−m−4/3.

In particular we have |x̃a − x̃a′| ∼ L−n−2/3 and |ξ̃b − ξ̃b′ | ∼ L−m−2/3. Let Ia, etc be the child
containing xa. If L is large then the diameter of Ia is much smaller than L−n−2/3 so we
have |xa − xa′ | ∼ L−n−2/3 and similarly for ξb − ξb′ , and similarly for the bounds on the dot
product. We omit the details of this computation which is basically just two pages of the
reverse triangle inequlity.

So there exist a, a′, b, b′ in which the desired estimates hold. However

Pr(a ∩ a′ ∩ b ∩ b′) = Pr(a) Pr(a′) Pr(b) Pr(b′) ≥ D−4 log2(3L)
µ = ρ. �

4.2. Getting a gain at one scale. Let K = − logL h. We assume that h is a reciprocal
integer, and L is a large multiple of 103/h, so K ≥ 0 is integral. In particular, we fix a scale
L−n, and define m by n+m+ 1 = K. Let I ∈ Vn(X), J ∈ Vm(X). We set

FJ(x) =
1

µ(J)

∫
J

eix·(ξ−ξJ )/hf(ξ) dµ(ξ)

where f ∈ L2(µ) is given, and ξJ is the center of the cube that we used to construct the tile
J . We introduce the norms for θ ∈ (0, 1),

‖F‖Cθ(I) := max(‖F‖C0(I), θ diam(I)‖∇F‖C0(Iconv))

where Iconv is the convex hull of the tile I. Then for

Ψb(x) :=
x · (ξJ − ξJb)

h
,

we have (for θ := 1
4

and L� 1)

‖eiΨbF‖Cθ(Ia) ≤ ‖F‖Cθ(I) (4.3)

which follows because

‖∇Ψb‖C0(I) ≤
diam(J)

h
.

This makes the norms Cθ(I) useful for getting a gain at every scale. The point is that the
Cθ(I) norms are scale-invariant since they have a diam(I) on the derivative term, while the
usual C1(I) norm is dimensionally inconsistent, so we can’t use it for induction on scale.



10 AIDAN BACKUS

We have the following gain at one scale. (Note that in light of (4.2) 1/ε1 is actually
polynomial in L!)

Proposition 4.11 (Dolgopyat’s inequality). Draw b at random. If L � 1 and ε1 := ρ/L
then

‖FJ‖2
Cθ(I) ≤ (1− ε1) E ‖FJb‖2

Cθ(I).

Why is this result called Dolgopyat’s inequality? The first time a result appeared like this
was in a paper of Dolgopyat [Dol98]. The ingredients are some sort of fractal or symbolic-
dynamical structure, which satisfies some sort of spacing condition like LNIC, and a phase
function which is interpreted as “oscillating much faster” in some sense than the function it
is multiplied with. In particular, if Dolgopyat’s inequality fails, then it is because we have
“almost equality” and so FJ cannot be less than the sum of its parts. But we have oscillation
so this is absurd.

Proof. First note that FJ = E eiΨbFJb . By Cauchy-Schwarz and (4.3) we have

‖FJ‖2
Cθ(Ia) ≤ (E ‖FJb‖Cθ(I))

2 ≤ E ‖FJb‖2
Cθ(I) =: R.

Taking expectations we get

σ2 := E ‖FJb‖2
Cθ(I) − E ‖FJ‖2

Cθ(Ia) ≥ E ‖FJb‖2
Cθ(I) − (E ‖FJb‖Cθ)2 = Var ‖FJb‖Cθ(I).

We want to show that σ2 ≥ ε1R. So let’s suppose that’s not true, hence σ2 < ε1R. Also let
Fab = FJb(xa), ωab = Ψb(xa), fab = eiωabFab. Then E |Fab|2 ≤ R.

Let’s draw a, a′, b′ independently of each other and b. By our contradiction assumption,
‖FJb‖Cθ(I) is very nearly independent of b. We claim that the same holds for fab, which will
lead to a contradiction when we condition on the event of Proposition 4.10 which implies
that fab, fa′b′ are uncorrelated.

To make this precise, we first bound

θ‖∇(eiΨbFJb)‖C0 diam Ia ≤
‖FJb‖Cθ(I)

2
.

From the definition of Cθ(Ia) and the triangle inequality,

‖FJ‖Cθ(Ia) ≤ max

(
‖FJ‖C0(Ia),

1

2
E ‖FJb‖Cθ(I)

)
.

Also

‖FJ‖2
C0(Ia) ≤ ‖FJ‖2

Cθ(Ia) ≤ R

and
1

2
E ‖FJb‖2

Cθ(I) ≤
R

2
≤ R + ‖FJ‖C0(Ia),

so

‖FJ‖2
Cθ(Ia) ≤

1

2

(
R + ‖FJ‖2

C0(Ia)

)
.

After taking expectations, we get

E ‖FJ‖2
C0(Ia) ≥ 2 E ‖FJ‖2

Cθ(Ia) −R = R− 2σ2.

Therefore, since |FJ(xa)| = ‖FJ‖C0(Ia),

|E fab|2 = E |FJ(xa)|2 ≥ R− 2σ2.
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Since
E |Fab| = E |fab| ≥ |E fab|,

a Taylor expansion of the square root now gives

E |Fab| ≥ (1− 2ε1)
√
R. (4.4)

Moreover, by our contradiction assumption,

E |Fab|2 = E |fab|2 = |E fab|2 + Var fab

≥ R− 2σ2 + Var fab.

Rearranging, we obtain
Var fab ≤ E |Fab|2 − (1− 2ε1)R.

Then we conclude
Var fab ≤ E |Fab|2 − (1− 2ε1)R ≤ 2σ2. (4.5)

So at this point we have an unconditional bound on Var fab. Let’s get some conditional
bounds on related quantities that contradict each other. We know by Cauchy-Schwarz that
E ‖FJb‖Cθ(I) ≤ R1/2, so by Chebyshev

Pr(‖FJb‖Cθ(I) ≤ 2
√
R) > 1− ε1.

We use this and (4.5) to get

E(|fab − fab′|2|max(‖FJb‖Cθ(I), ‖FJb′‖Cθ(I)) ≤ 2
√
R) ≤ σ2 + E(|fab − fab′ |2)

≤ σ2 + 2 Var fab ≤ 5σ2

hence
E(|fab − fab′ |2|max(‖FJb‖Cθ(I), ‖FJb′‖Cθ(I)) ≤ 2

√
R) . σ2. (4.6)

Let S be the intersection of the above event, with the event of Proposition 4.10, so (since
ε1 � ρ) Pr(S) & ρ. By the mean value theorem and the definition of Cθ,

|Fab − Fa′b| ≤
2R1/2

θ
LH(I)|xa − xa′|.

In particular if S holds,
|Fab − Fa′b| . R1/2L−2/3. (4.7)

Here’s where the contradiction comes in. Let τ := (xa − xa′) · (yb − yb′) = ωab − ωab′ −
ωa′b + ωa′b′ . If S holds, then

|eiτ − 1| ≥ |τ | & L−1/3

but on the other hand, the L2 triangle inequality gives

E(|(eiτ − 1)Fab|2|S) ≤ 4 E(|Fab − Fa′b|2 + |Fa′b′ − Fab′ |2 + |fab − fab′ |2 + |fa′b′ − fa′b|2|S)

where the first two terms are controlled by (4.7) as . R/L4/3 and the latter are controlled
by (4.6) and Pr(S) & ρ as . σ2/ρ. Summing up,

E(|Fab|2|S) .
R

L2/3
+
L2/3σ2

ρ
. (4.8)

On the other hand

Pr(|Fab|2 ≤ R/5) ≤ Pr(|Fab| ≤ E |Fab| −R1/2/2)

. RVar |Fab| = RVar fab ≤ 2Rσ2 . ε1.
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So

Pr(|Fab|2 ≤ R/5|S) ≤ Pr(|Fab|2 ≤ R/5)

Pr(S)
.
ε1

ρ
=

1

L
.

By Markov,

E(|Fab|2|S) ≥ R

5
Pr(|Fab|2 ≥ R/5|S) =

R

5

(
1− 1

L

)
& R.

Combining this with (4.8) and our contradiction assumption, we get

R .
R

L2/3
+
L2/3σ2

ρ
<

R

L2/3
+

R

L1/3

which is absurd if L� 1. �

4.3. Induction. Let EJ : VK−H(J) → R be defined by EJ(I) := ‖FJ‖Cθ(I). Here L−K = h.
We put a measure on Vn by µ({I}) = µ(I). For the base case we take H(J) = K, and use
Cauchy-Schwarz

|∇FJ(x)| = 1

µ(J)

∫
J

i∂xΨJ(x, y) exp(i(ΨJ(x, y)))f(x, y)

≤ diam J

hµ(J)
‖f‖L2(J).

We also have

‖FJ‖C0 ≤
‖f‖L2(J)√
µ(J)

.

In particular, since diam J ∼ h,

EJ(I) .
‖f‖L2(J)√
µ(J)

.

Taking L2 norms of both sides in the variable I using the measure on VK−H(J) and using
µ(X) . 1,

‖EJ‖2
L2 .

‖f‖2
L2(J)

µ(J)
,

and taking L2 norms of both sides in Dolgopyat’s inequality, we get for H(J) < K,

‖EJ‖2
L2 ≤ (1− ε1)

µ(J)

µ(Jb)
E ‖EJb‖2

L2 .

So by induction backwards on H(J), we get for H(J) = 0,

‖EJ‖2
L2 .

(1− ε1)K

µ(J)
‖f‖2

L2(J).

Also
‖Bh(1Jf)‖2

L2 . ‖FJ‖2
L2 ≤ ‖EJ‖2

L2

so summing in the O(1) many J with H(J) = 0 which it takes to cover X,

‖Bhf‖L2 . (1− ε1)K/2‖f‖L2 .

If we take ε0 := 0.5 · logL(1 − ε1) then (1 − ε1)K/2 = hε0 , which completes the proof of the
Dyatlov–Jin uncertainty principle.
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