THE FENCHEL-ROCKAFELLAR THEOREM

AIDAN BACKUS

1. SUBDIFFERENTIAL CALCULUS
Let X be a Banach space and let X* be its dual space.

Definition 1.1. Let J be a convex function on X, zg € X, and «* € X*. Then z* is a subgradient
of J at xq, if for every x € X,

J(x) = J(zg) > (2", x).
If J has a subgradient at xg, then J is subdifferentiable at xg.

Theorem 1.2. Let J be a convex function on X and x¢9 € X. If J is continuous at xzg and
—o00 < J(xg) < +00, then J is subdifferentiable at x.

Proof. Let

Fi={(z,t) e X xR : J(x) <t}
be the epigraph of J. Since J is continuous at zy and convex, and —oo < J(xg) < oo, I' has
nonempty and convex interior, I'°; and (xg, J(z¢)) ¢ I'°. So by the Hanh-Banach theorem, there
exists an affine hyperplane H C X such that (zq, J(x¢)) € H and I'° N H = (). Furthermore, there
exists (z*,t*) € X* € R such that (z*,t*) is an upwards-pointing conormal vector to H, in the
sense that there exists s € R such that

H={(z,t) e X xR: (2", z) +t't = s}
and for any (z,t) € T,
(x*,x) +t7t > s.

Therefore, for any x € X,

(x*,x —xo) > —t*(J(z) — J(x0)).
So —z*/t* is a subgradient of J at xg. O

2. THE FENCHEL-ROCKAFELLAR THEOREM

Let A: X — Y be a continuous linear map of Banach spaces. The situation we have in mind is
that there is a manifold M, with de Rham complex 2°, and we are considering the linear map

d: WhP(M,QF) — LP(M,QF),
where p € [1,00), but there is no need to be so explicit at this stage.
Suppose that we are given a convex function J on X x Y, and we want to minimize
F(z):= J(z,Az).

Let

J*(SC*,y*) = sup <$*,$>+<y*,y> —J([L‘,y)
(z,y)EX XY

be the convex conjugate of J, which is a convex function on the dual space, X* x Y*.
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2 AIDAN BACKUS
Definition 2.1. The dual problem of minimizing F' is the problem of maximizing
G(y") == (A", —y7).
A pair (z,7") € X x Y™ satisfies the duality relation if
F(z)=G(@").
Lemma 2.2. One has

sup G(y*) < inf F(z).

Proof. Let y* € Y*. Then
=— sup [(A"y",z) — (" y) — J(z,y)]

(z,y)EX XY
= 1 f J ) + *7 - A* *7
(x,y)ngxY[ (JJ y) <y y> < Y $>]
< in)f( [J(z, Az) + (y*, Az) — (A*y*, z)]
S
= inf F(x). =
zeX

I’'m not aware that there’s a standard name for the below technical condition, but it’s important
and annoying to write out every time.

Definition 2.3. (J,A) is suitable if F' is not identically —oo and there exists g € X such that
F(x0) < 400 and y — J(xp,y) is continuous at Axg.

Theorem 2.4 (Fenchel-Rockafellar theorem). Suppose that (J, A) is suitable. Then G has a maz-
mmum y* such that

G(y") = inf F(z). (2.1)

Proof. Let
h(y) :== xlél)f( J(x, Az —y).

Since J is convex, h is convex. By suitability,

h(0) = xlélf(F(:L‘) < F(z9) < +00.

Also by suitability, there exists € > 0 and M < +o0 such that if |y| < & then

h(y) < inf J(z, Aw —y) < J(z0, Awo —y) < M < +o0.
S

Since h is convex, it follows that h is continuous at 0. So by Theorem 1.2, there exists 7" € Y*
such that for every y € Y,

h(y) = h(0) + (¥*, ).
In other words,

inf [h(y) = ("> »)] 2 h(0) = inf F(z).
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Applying this inequality, we compute

=— sup [(AT2) - Ty — J(2,y)]
(z,y)eX XY

= - sup [<A*y*7x> - <§*7Ax_y> _J(vax_y)}
(z,y)eX XY

=— sup [(T",y) — J(z, Az —y)]
(z,y)eX XY

= inf [h(y) ~ (7"

> inf F(x).
o= S

By Lemma 2.2, it follows that ¥* is a maximum of G and (2.1) holds. O

Corollary 2.5. Suppose that (J,A) is suitable, and (z,7*) € X x Y*. Then (x,y") satisfies the
duality relation iff x is a minimum of F' and y* is a mazimum of G.

Proof. If z is a minimum of F' and 7* is a maximum of G, then since (J, A) is suitable, the Fenchel-
Rockafellar theorem furnishes a maximum §* of G such that

G(7') = G(F") = inf F(@) = F(a)
The converse is immediate from Lemma 2.2. O

3. THE MAX FLOW/MIN CUT THEOREM

Let (V, E) be a finite directed graph such that for any (v,w) € E, (w,v) ¢ E. The vector spaces
RY and R” come with a natural inner product, which makes the Dirac delta functions at each
vertex and edge form an orthonormal basis. The exterior derivative on (V, E) is

d:RV - RF
[ ((v,w) = f(w) = f(v)).
Lemma 3.1 (divergence theorem). The adjoint d* : R¥ — RY of d satisfies

d*(p(v) = Z 4,0(1/, w) - Z cp(u,v).
weV ueV
(v,w)eEE (u,w)eE
Proof. We compute
(f,d%) = (df, ¢)

= D (flw) = f(0)plv, w)

(v,w)EE

S Y fwpww) -3 Y fo)pw,w)

weV  veV veV weV
(v,w)EE (v,w)eE

=D )| DD eww) = > e(u,v) O
veV weV ueV
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satisfy
J(fp)= Y le(v,w)
(v,w)EE

if f(s;) =1, and J(f,p) = 400 otherwise. Then J is convex, and we are interested in minimizers
fof f—= J(f,df), such a minimizer is called a minimal cut.
We compute the convex conjugate,

T(g0) = sup Y f)g)+ Y @0, w)(v,w) = J(f,¢).

(fip)eRV xRFE veV (v,w)EE

This supremum can only be attained by f such that f(s;) = i, for otherwise J* is identically —oo.
Thus

g, ) = sup > f(0)g(v) + sup > (p(v,w)d(v,w) — (v, w))),
J{(il;‘:/l veV pERE (vyw)EE

The dual problem, thus, is to maximize

T, =) = = sup Y (o) d(v) = sup D ([p(v,w)] = p(v, w)d (v, w))

]f(ill:){:l veV peRE (v,w)eE
—— [Zf(v)d*w(v) +oint Y (o), w) — (v, ).
feRrR e
Flsi)=—i veV (v,w)EE

Let V° be the interior, V' \ {sg, s1}. In order for the first infimum to not just be —oo, it must be
that d*¢ [ V° = 0, in which case the first infimum is just — d*¥(s1). For the second infimum to
not just be —oo, it must be that || < 1. We call ¢ which maximizes —J*(d*y, —) a mazimal
cut.

Theorem 3.2 (max flow/min cut theorem). There exists a minimal cut f and a mazimal flow 1),
and for any such minimal cut and mazimal flow,

> ldfw,w)] = = d*P(s1).
(v,w)eE
Proof. First observe that the infimum in
ST@, ) = —ds) + it D (e w)dw) = fe(v,w)),
(v,w)EE

if it is not —oo, must be realized by a ¢ which has the opposite sign as ¢ (since [¢)| < 1). Therefore
that infimum is < 0 and so

—JH (A", =) < —d™P(s1).
Let fo(sg) = 0 and for every v # sg, fo(v) = 1. Then 0 < J(fo,dfo) < +00 and ¥ — J(fo,?) is

continuous. So fp witnesses that (J, A) is suitable. Also f +— J(f,df) is coercive, since if f(sg) =0
and there exists v € V such that | f(v)| > C, then there exists (u,w) € E such that

C
> .
4 (ww)] = ———

So there is a pair (f, 1) which satisfies the duality relation,

Yo ldfww)==dP(s)) + inf D (v, w)d(v,w) = [p(v,w))),

RE
(vyw)eE ve (vyw)eE
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such that f(s;) =4, [¢| <1, and d*¢ | V° = 0. From the constraints f(s;) = and d*¢ | V° =0,

we see that

—dB(s1) = 3 f0) (),

veV
and so )
Yo ldfw)] = f@)dPw) + nf > (p(v,w)i(v,w) ~ e(v,w)])
(v,w)EE veV PER (v,w)EE

< Z di(%w)a(%w) + Z (df(%w)@(%w) - |di(vaw)’)

(v,w)eV (v,w)EE
Rearranging and applying the constraint || < 1,
S oldfww) < DD dfww)plv,w) < Y [df(v,w)].
(v,w)EE (v,w)EE (v,w)eEE
The theorem follows, since

Z di(vvw)a(v’ w) = - d*w(sl)'

(v,w)EE
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