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1. Subdifferential calculus

Let X be a Banach space and let X∗ be its dual space.

Definition 1.1. Let J be a convex function on X, x0 ∈ X, and x∗ ∈ X∗. Then x∗ is a subgradient
of J at x0, if for every x ∈ X,

J(x)− J(x0) ≥ ⟨x∗, x⟩.
If J has a subgradient at x0, then J is subdifferentiable at x0.

Theorem 1.2. Let J be a convex function on X and x0 ∈ X. If J is continuous at x0 and
−∞ < J(x0) < +∞, then J is subdifferentiable at x0.

Proof. Let

Γ := {(x, t) ∈ X ×R : J(x) ≤ t}
be the epigraph of J . Since J is continuous at x0 and convex, and −∞ < J(x0) < ∞, Γ has
nonempty and convex interior, Γ◦, and (x0, J(x0)) /∈ Γ◦. So by the Hanh-Banach theorem, there
exists an affine hyperplane H ⊂ X such that (x0, J(x0)) ∈ H and Γ◦ ∩H = ∅. Furthermore, there
exists (x∗, t∗) ∈ X∗ ∈ R such that (x∗, t∗) is an upwards-pointing conormal vector to H, in the
sense that there exists s ∈ R such that

H = {(x, t) ∈ X ×R : ⟨x∗, x⟩+ t∗t = s}
and for any (x, t) ∈ Γ,

⟨x∗, x⟩+ t∗t ≥ s.

Therefore, for any x ∈ X,

⟨x∗, x− x0⟩ ≥ −t∗(J(x)− J(x0)).

So −x∗/t∗ is a subgradient of J at x0. □

2. The Fenchel–Rockafellar theorem

Let Λ : X → Y be a continuous linear map of Banach spaces. The situation we have in mind is
that there is a manifold M , with de Rham complex Ω•, and we are considering the linear map

d :W 1,p(M,Ωk) → Lp(M,Ωk+1),

where p ∈ [1,∞), but there is no need to be so explicit at this stage.
Suppose that we are given a convex function J on X × Y , and we want to minimize

F (x) := J(x,Λx).

Let

J∗(x∗, y∗) = sup
(x,y)∈X×Y

⟨x∗, x⟩+ ⟨y∗, y⟩ − J(x, y)

be the convex conjugate of J , which is a convex function on the dual space, X∗ × Y ∗.
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Definition 2.1. The dual problem of minimizing F is the problem of maximizing

G(y∗) := −J∗(Λ∗y∗,−y∗).

A pair (x, y∗) ∈ X × Y ∗ satisfies the duality relation if

F (x) = G(y∗).

Lemma 2.2. One has

sup
y∗∈Y ∗

G(y∗) ≤ inf
x∈X

F (x).

Proof. Let y∗ ∈ Y ∗. Then

G(y∗) = −J∗(Λ∗y∗,−y∗)
= − sup

(x,y)∈X×Y
[⟨Λ∗y∗, x⟩ − ⟨y∗, y⟩ − J(x, y)]

= inf
(x,y)∈X×Y

[J(x, y) + ⟨y∗, y⟩ − ⟨Λ∗y∗, x⟩]

≤ inf
x∈X

[J(x,Λx) + ⟨y∗,Λx⟩ − ⟨Λ∗y∗, x⟩]

= inf
x∈X

F (x). □

I’m not aware that there’s a standard name for the below technical condition, but it’s important
and annoying to write out every time.

Definition 2.3. (J,Λ) is suitable if F is not identically −∞ and there exists x0 ∈ X such that
F (x0) < +∞ and y 7→ J(x0, y) is continuous at Λx0.

Theorem 2.4 (Fenchel–Rockafellar theorem). Suppose that (J,Λ) is suitable. Then G has a max-
imum y∗ such that

G(y∗) = inf
x∈X

F (x). (2.1)

Proof. Let

h(y) := inf
x∈X

J(x,Λx− y).

Since J is convex, h is convex. By suitability,

h(0) = inf
x∈X

F (x) ≤ F (x0) < +∞.

Also by suitability, there exists ε > 0 and M < +∞ such that if |y| < ε then

h(y) ≤ inf
x∈X

J(x,Λx− y) ≤ J(x0,Λx0 − y) ≤M < +∞.

Since h is convex, it follows that h is continuous at 0. So by Theorem 1.2, there exists y∗ ∈ Y ∗

such that for every y ∈ Y ,

h(y) ≥ h(0) + ⟨y∗, y⟩.

In other words,

inf
y∈Y

[h(y)− ⟨y∗, y⟩] ≥ h(0) = inf
x∈X

F (x).
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Applying this inequality, we compute

G(y∗) = −J∗(Λ∗y∗,−y∗)
= − sup

(x,y)∈X×Y
[⟨Λ∗y∗, x⟩ − ⟨y∗, y⟩ − J(x, y)]

= − sup
(x,y)∈X×Y

[⟨Λ∗y∗, x⟩ − ⟨y∗,Λx− y⟩ − J(x,Λx− y)]

= − sup
(x,y)∈X×Y

[⟨y∗, y⟩ − J(x,Λx− y)]

= inf
y∈Y

[h(y)− ⟨y∗, y⟩]

≥ inf
x∈X

F (x).

By Lemma 2.2, it follows that y∗ is a maximum of G and (2.1) holds. □

Corollary 2.5. Suppose that (J,Λ) is suitable, and (x, y∗) ∈ X × Y ∗. Then (x, y∗) satisfies the
duality relation iff x is a minimum of F and y∗ is a maximum of G.

Proof. If x is a minimum of F and y∗ is a maximum of G, then since (J,Λ) is suitable, the Fenchel–
Rockafellar theorem furnishes a maximum ỹ∗ of G such that

G(y∗) = G(ỹ∗) = inf
x∈X

F (x) = F (x).

The converse is immediate from Lemma 2.2. □

3. The max flow/min cut theorem

Let (V,E) be a finite directed graph such that for any (v, w) ∈ E, (w, v) /∈ E. The vector spaces
RV and RE come with a natural inner product, which makes the Dirac delta functions at each
vertex and edge form an orthonormal basis. The exterior derivative on (V,E) is

d : RV → RE

f 7→ ((v, w) 7→ f(w)− f(v)).

Lemma 3.1 (divergence theorem). The adjoint d∗ : RE → RV of d satisfies

d∗φ(v) =
∑
w∈V

(v,w)∈E

φ(v, w)−
∑
u∈V

(u,v)∈E

φ(u, v).

Proof. We compute

⟨f,d∗φ⟩ = ⟨df, φ⟩

=
∑

(v,w)∈E

(f(w)− f(v))φ(v, w)

∑
w∈V

∑
v∈V

(v,w)∈E

f(w)φ(v, w)−
∑
v∈V

∑
w∈V

(v,w)∈E

f(v)φ(v, w)

=
∑
v∈V

f(v)

 ∑
w∈V

(v,w)∈E

φ(v, w)−
∑
u∈V

(u,v)∈E

φ(u, v)

 . □

Given two vertices s0, s1 ∈ V , let

J : RV ×RE → R
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satisfy

J(f, φ) =
∑

(v,w)∈E

|φ(v, w)|

if f(si) = i, and J(f, φ) = +∞ otherwise. Then J is convex, and we are interested in minimizers
f of f 7→ J(f, df), such a minimizer is called a minimal cut .

We compute the convex conjugate,

J∗(g, ψ) = sup
(f,φ)∈RV ×RE

∑
v∈V

f(v)g(v) +
∑

(v,w)∈E

φ(v, w)ψ(v, w)− J(f, φ).

This supremum can only be attained by f such that f(si) = i, for otherwise J∗ is identically −∞.
Thus

J∗(g, ψ) = sup
f∈RV

f(si)=i

∑
v∈V

f(v)g(v) + sup
φ∈RE

∑
(v,w)∈E

(φ(v, w)ψ(v, w)− |φ(v, w)|).

The dual problem, thus, is to maximize

−J∗(d∗ψ,−ψ) = − sup
f∈RV

f(si)=i

∑
v∈V

f(v) d∗ψ(v)− sup
φ∈RE

∑
(v,w)∈E

(|φ(v, w)| − φ(v, w)ψ(v, w))

= inf
f∈RV

f(si)=−i

[∑
v∈V

f(v) d∗ψ(v)

]
+ inf

φ∈RE

∑
(v,w)∈E

(φ(v, w)ψ(v, w)− |φ(v, w)|).

Let V ◦ be the interior, V \ {s0, s1}. In order for the first infimum to not just be −∞, it must be
that d∗ψ ↾ V ◦ = 0, in which case the first infimum is just −d∗ψ(s1). For the second infimum to
not just be −∞, it must be that |ψ| ≤ 1. We call ψ which maximizes −J∗(d∗ψ,−ψ) a maximal
cut .

Theorem 3.2 (max flow/min cut theorem). There exists a minimal cut f and a maximal flow ψ,
and for any such minimal cut and maximal flow,∑

(v,w)∈E

|df(v, w)| = −d∗ψ(s1).

Proof. First observe that the infimum in

−J∗(d∗ψ,−ψ) = −d∗ψ(s1) + inf
φ∈RE

∑
(v,w)∈E

(φ(v, w)ψ(v, w)− |φ(v, w)|),

if it is not −∞, must be realized by a φ which has the opposite sign as ψ (since |ψ| ≤ 1). Therefore
that infimum is ≤ 0 and so

−J∗(d∗ψ,−ψ) ≤ −d∗ψ(s1).

Let f0(s0) = 0 and for every v ̸= s0, f0(v) = 1. Then 0 ≤ J(f0,df0) < +∞ and ψ 7→ J(f0, ψ) is
continuous. So f0 witnesses that (J,Λ) is suitable. Also f 7→ J(f,df) is coercive, since if f(s0) = 0
and there exists v ∈ V such that |f(v)| ≥ C, then there exists (u,w) ∈ E such that

| df(u,w)| ≥ C

cardE
.

So there is a pair (f, ψ) which satisfies the duality relation,∑
(v,w)∈E

|df(v, w)| = −d∗ψ(s1) + inf
φ∈RE

∑
(v,w)∈E

(φ(v, w)ψ(v, w)− |φ(v, w)|),
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such that f(si) = i, |ψ| ≤ 1, and d∗ψ ↾ V ◦ = 0. From the constraints f(si) = i and d∗ψ ↾ V ◦ = 0,
we see that

−d∗ψ(s1) =
∑
v∈V

f(v) d∗ψ(v),

and so ∑
(v,w)∈E

|df(v, w)| =
∑
v∈V

f(v) d∗ψ(v) + inf
φ∈RE

∑
(v,w)∈E

(φ(v, w)ψ(v, w)− |φ(v, w)|)

≤
∑

(v,w)∈V

df(v, w)ψ(v, w) +
∑

(v,w)∈E

(df(v, w)ψ(v, w)− | df(v, w)|).

Rearranging and applying the constraint |ψ| ≤ 1,∑
(v,w)∈E

|df(v, w)| ≤
∑

(v,w)∈E

df(v, w)ψ(v, w) ≤
∑

(v,w)∈E

| df(v, w)|.

The theorem follows, since ∑
(v,w)∈E

df(v, w)ψ(v, w) = −d∗ψ(s1). □
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