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Chapter 1

Functional analysis

Here we treat functional analysis in a high level of abstraction.
Throughout these notes, we mean by f � g that there is a universal constant C > 0 such

that f ≤ Cg.

1.1 Locally convex spaces

Fix a vector space V .

Definition 1.1. V is said to be a topological vector space if it is equipped with a topology
for which addition and multiplication are continuous.

Definition 1.2. V is said to be locally convex if V is equipped with a family of seminorms
Pα and the initial topology with respect to the Pα.

This is the smallest topology containing the open sets Pα([0, ε)) for each α and each ε > 0
and which is translation-invariant.

The most useful examples of locally convex spaces are Banach spaces.

Definition 1.3. V is said to be a Banach space if V is equipped with the topology arising
from a complete norm.

Definition 1.4. If V is a topological vector space, then the dual space of V ∗ is the space of
continuous linear maps V → C.

Definition 1.5. Let W be a Banach space and define a norm on Hom(V,W ) by

||T || = sup
||v||≤1

||Tv||.

So V ∗ is a normed space, V ∗ ⊆ Hom(V,C). In general it is very difficult to construct
elements of V ∗. In general we cannot guarantee constructively that V ∗ is nontrivial. On the
other hand, it is often impossible to construct linear functions which are discontinuous (for
example, any linear functional on a Banach space will be continuous if it was constructed
without the axiom of choice).
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Definition 1.6. A function f : V → C is said to be sublinear if it obeys the triangle
inequality and if for each c > 0 and x ∈ V , f(cx) = cf(x).

Obviously seminorms are sublinear. Minkowski gauges are another useful example.

Definition 1.7. Let K ⊆ V . Then:

1. K is convex if for each x, y ∈ K, c ∈ [0, 1], cx+ (1− c)y ∈ K.

2. K is balanced if for each c ∈ [0, 1], cK ⊆ K.

If K is balanced and convex, then the Minkowski gauge of K is the functional

pK(x) = inf
cK3x

c.

Notice that the balanced condition suggests that K needs to be close to the origin.
Moreover, Minkowski gauges are sublinear.

Sublinear estimates allow us to construct functionals using the axiom of choice, while
still guaranteeing that they are continuous.

Theorem 1.8 (Hanh-Banach). Assume that p : V → C is sublinear, U ⊂ V a subspace, and
f : U → C a linear functional. If f is dominated by p, i.e. for each x ∈ U , |f(x)| ≤ |p(x)|,
then f extends to V .

In general the extension of f will only be unique in case U is dense. So we have to use
the axiom of choice to construct f .

Proof. The extension to the complex case is trivial so we replace C with R. Assume that f
is defined on a space W , U ⊆ W ⊂ V . Choose v ∈ V \W and define f(v) such that for each
w ∈ W and s, t ≥ 0,

p(w − sv)

s
≤ h(v) ≤ p(w + tv)− f(w)

t
.

This is always possible because

f((t+ s)w) ≤ p((t+ s)w) = p((t+ s)w + tsv − tsv) ≤ p(sw + stv) + p(tw − stv)

so
f(w)− p(w − sv)

s
≤ p(w + tv)− f(w)

t
.

Therefore for any W and v we can extend f to W + v. If W is the family of subspaces of
V on which f is defined and C ⊂ W is a chain, then C therefore has an upper bound. Since
U ∈ W , Zorn’s lemma implies that W has a maximal element, which is clearly V .

In case p is the norm of V , this implies that V ∗ is nontrivial. The Hanh-Banach theorem
also has a useful geometric interpretation.

Theorem 1.9 (Hanh-Banach separation theorem). Let R be the scalar field and A,B ⊂ V
be convex, nonempty, and disjoint. If A is open then there is a ϕ ∈ V ∗ and t ∈ R such that
for every a ∈ A and b ∈ B,

ϕ(a) < t ≤ ϕ(b).
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Proof. Choose a0 ∈ A and b0 ∈ B, and let C = A− B + b0 − a0. Then 0 ∈ C, C is convex,
and C =

⋃
b∈B A− b+ b0 − a0, so C is open. If x = b0 − a0, then x /∈ C.

By the Hanh-Banach theorem, choose a ϕ ∈ V ∗ such that ϕ(x0) = 1 and ϕ < 1 on C.
Given a ∈ A and b ∈ B we have

ϕ(a) < ϕ(b) + ϕ(a0)− ϕ(b0) + 1 = ϕ(b).

If t = infB ϕ, then this gives, for every a and b,

ϕ(a) ≤ t ≤ ϕ(b).

Since A is open, ϕ(A) is open so the claim holds.

In particular, linear functionals separate points.
Let’s consider more properties of convexity. Let the scalar field be R and let S ⊂ V be

nonempty, compact, and convex.

Definition 1.10. A face of S is a nonempty, compact, convex set K ⊆ S such that for each
x ∈ K, if there are y1, y2 ∈ S and c ∈ (0, 1) such that x = cy1 + (1− c)y2, then y1, y2 ∈ K.
If |K| = 1, then K is called an extreme point .

Definition 1.11. If X ⊂ V is a set, the convex hull of X is the smallest set containing X
which is closed and convex.

For example, if S is a convex polygon, then the extreme points of S are its vertices, and
S is the convex hull of its vertices. The Krein-Milman theorem says that this phenomenon
happens even in infinite dimensions.

Theorem 1.12 (Krein-Milman). S is the convex hull of its extreme points.

Proof. Assume that S ′ is the convex hull of the extreme points of S. Then S ′ ⊆ S, so S ′ is
compact. If there is an x0 ∈ S \ S ′, then since V ∗ separates points, there is a λ ∈ V ∗ such
that λ(S ′) < λ(x0). If C = maxλ(x0), then ϕ−1(C) ∩ S contains no extreme points of S.
We can contradict this by showing that every convex compact set has an extreme point.

Let F be the set of all faces of S. Clearly S ∈ F so F is nonempty. If C ⊂ F is a chain,
then

⋂
C is a face, so by Zorn’s lemma F has a minimal element S0.

Let ϕ ∈ V ∗. Since S0 is convex, it is connected, so ϕ(S0) is compact and connected. In
particular, ϕ(S0) = [a, b] for some a ≤ b. So ϕ−1(b) ∩ S0 is nonempty, convex, and compact.
If x ∈ ϕ−1(b) ∩ S0,

x = ty1 + (1− t)y2,

then y1, y2 ∈ S0. Therefore ϕ(x) = b = cϕ(y1) + (1− c)ϕ(y2), so ϕ(y1), ϕ(y2) ≥ c. Therefore
y1, y2 ∈ ϕ−1(b) ∩ S0, so ϕ−1(b) ∩ S0 is a face and by minimality, ϕ−1(b) ∩ S0 = S0. So
ϕ(S0) = b. Since ϕ was arbitrary and V ∗ separates points, |S0| = 1. So S has an extreme
point.
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1.2 Hilbert spaces

Definition 1.13. A Hilbert space V is a Banach space whose norm arises from an inner
product.

The basic fact about Hilbert spaces V is that V ∗ = V .

Theorem 1.14 (Riesz representation theorem). The association

V → V ∗

v 7→ (w 7→ 〈v, w〉)

is a surjective isometry.

Proof. Evaluating w 7→ 〈v, w〉 at v, we see ||v|| = ||v||op. So we just have to check surjectivity.
Let ϕ ∈ V ∗, and F = kerϕ. If F = 0 we’re done; otherwise F⊥ is nonempty. Let z ∈ F⊥
and α = ϕ(z)/||z||. Then for any x ∈ V ,

〈x, αz〉 =

〈
x− ϕ(x)

ϕ(z)
z, αz

〉
+

〈
ϕ(x)

ϕ(z)
z, αz

〉
=

〈
ϕ(x)

ϕ(z)
z, αz

〉
=
ϕ(x)

ϕ(z)
ϕ(z) = ϕ(x).

1.3 Bochner integration

Now we fix a Banach space B and a measure space (X,Σ, µ). Recall that the Caratheodory
construction is the standard way of building (X,Σ, µ): we define a semiring Σ0 of sets (i.e.
a family of sets closed under finite intersection and subsets of finite disjoint unions) and a
countably additive function µ on Σ0, which then extends to an outer measure µ∗ on the
power set P(X). If E ⊆ X satisfies the Caratheodory criterion, i.e. that for all F ⊆ X,

µ∗(F ) = µ∗(F ∩ E) + µ∗(F \ E),

then we declare that E is measurable. The measurable sets form a σ-algebra Σ on which µ∗

is outer measurable (note that µ∗ did not have to be constructed from a semiring for this
step to work; any outer measure will do) and we define the restriction µ of µ∗ to Σ to be the
desired outer measure.

Definition 1.15. A B-valued integrable simple function is a finite linear combination of
functions

χbE : X → B

E 3 x 7→ b

Ec 3 x 7→ 0
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where E is a measurable set with ||µ(E)|| <∞, b ∈ B.
The integral of a B-valued ISF f =

∑
n χ

bn
En

is∫
X

f dµ =
∑
n

bnµ(En)

and the L1-norm is ||f ||L1 =
∫
X
|f | dµ.

Then L1 is naturally the Cauchy completion of the ISF.

Definition 1.16. A function X → B is a B-valued integrable function if it lies in L1.

Definition 1.17. For p ∈ (1,∞), the Lp norm of f : X → B is

||f ||Lp =

(∫
X

||f(x)||p dµ(x)

)1/p

and the L∞ norm is ||f ||L∞ = limp→∞ ||f ||Lp = ess sup ||f ||.

The usual Lebesgue convergence theorems hold:

Theorem 1.18 (Lebesgue convergence theorems). Let {fn} be a pointwise convergent se-
quence of integrable functions. Then:

1. If each fn ≤ fn+1,

lim
n

∫
fn =

∫
lim
n
fn <∞.

2. If there is an integrable function g > 0 such that every |fn| ≤ g,

lim
n

∫
fn =

∫
lim
n
fn ≤ g.

3. ∫
lim inf

n
fn ≤ lim inf

n

∫
fn.

Now let’s make some estimates which will actually prove that the Lp-norm is a norm,
besides being useful later.

Theorem 1.19 (Jensen’s inequality). Let f : R→ R be convex and g an integrable function.
Then

f

(∫
g

)
≤
∫
f ◦ g.

Theorem 1.20 (Holder’s inequality). Let

1

p
+

1

q
= 1.

Then ||fg||L1 ≤ ||f ||Lp ||g||Lq .
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Proof. The mapping x 7→ xp is convex so if f, g ≥ 0,∫
fg =

(∫
gq
)∫

fg1−q g
q∫
gq
≤
(∫

gq
)(∫

fpgp(1−q)
gq∫
gq

)1/p

=

(∫
gq
)((∫

gq
)(∫

fp
))1/p

≤
(∫

fp
)1/p(∫

gq
)1/q

.

Notice that Holder’s inequality implies that L2 is a Hilbert space with inner product

〈f, g〉 =

∫
fg.

Theorem 1.21 (Minkowski’s inequality). Let

1

p
+

1

q
= 1.

Then
||f + g||Lp ≤ ||f ||Lp + ||g||Lp .

Proof. By Holder’s inequality,∫
|f + g|p =

∫
|f + g||f + g|p−1 ≤

∫
(|f |+ |g|)|f + g|p−1

≤

((∫
|f |p
)1/p

+

(∫
|g|p
)1/p

)(∫
|f + g|(p−1)( p

p−1)
)1− 1

p

= (||f ||Lp + ||g||Lp)
||f + g||pLp
||f + g||Lp

.

Now we discuss change of variables.

Definition 1.22. Let ν be a measure. Then

1. ν is absolutely continuous with respect to µ if for every measurable set A, µ(A) = 0
implies ν(A).

2. ν is singular with respect to µ if there are disjoint measurable sets A,B such that
X = A ∩B, ν(A) = 0 and µ(A) = 0.

3. If there is a measurable function f such that for every measurable set A,

ν(A) =

∫
A

f dµ,

then f is the Radon-Nikodym derivative of ν, written

f =
dν

dµ
.
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Theorem 1.23 (Radon-Nikodym). Let µ be σ-finite and ν be a positive measure. Then
there is a unique decomposition ν = νa + νs such that νa is absolutely continuous and νs is
singular (with respect to µ). Moreover, νa has a Radon-Nikodym derivative.

In particular, if ν was already absolutely continuous, then νs = 0 and ν has a Radon-
Nikodym derivative.

Proof. Uniqueness is obvious. First assume µ(X) <∞. Then µ+ν is finite, so L∞(µ+ν) ⊆
L1(µ+ ν). So by the Cauchy-Schwarz inequality, if f is an ISF,∣∣∣∣∫ f dν

∣∣∣∣ ≤ ||f ||L1(ν) ≤ ||f ||L1(µ+ν) � ||f ||L2(µ).

So
∫
· dν is L2-continuous on ISF, hence on L2(µ + ν). So by the Riesz representation

theorem, there is a nonnegative h ∈ L1(µ+ ν) such that∫
f dν =

∫ ∫
fh d(µ+ ν)

for any f ∈ L2. In particular, if A is measurable,∫
A

h d(µ+ ν) = ν(A) ≤ (µ+ ν)(A).

Without loss of generality we assume h ≤ 1. If g ∈ L∞(ν),∫
g dν =

∫
gh dµ+

∫
gh dν.

So if Y is the set of all y such that 0 ≤ h(y) < 1, it follows that µ(Y ) = µ(X). By induction,∫
g dν =

∫
g(h+ · · ·+ hn) dµ+

∫
ghn dν.

Since h ≤ 1, the dominated convergence theorem implies∫
ghn dν →

∫
X\Y

g dν

and if

f =
hχY
1− h

we have ∫
g dν =

∫
Y

gf dµ+

∫
X\Y

g dν

and take νs(A) = ν(A ∩ (X \ Y )). Then we take

νa(A) =

∫
A

f dµ

so f is the Radon-Nikodym derivative of νa, νa + νs = ν by taking g = χA.
To extend to the σ-finite case, break up X into countably many finite measure spaces

and sum over them.
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Next we discuss iterated integrals. Given measure spaces (X,S, µ) and (Y, T, ν), we need
a σ-algebra on X × Y and a measure defined on that σ-algebra. To do this, we use the
Caratheodory construction.

Definition 1.24. If E ∈ S and F ∈ T , then E×F is a measurable rectangle. Let S⊗T denote
the smallest σ-algebra containing the measurable rectangles, and on for each measurable
rectangle, define a countably additive function by

µ⊗ ν(E × F ) = µ(E)ν(F ).

By the monotone convergence theorem dν, µ⊗ν is countably additive. So the Caratheodory
construction gives rise to a measure µ⊗ ν whose measurable sets include S ⊗ T (in fact, is
the completion of S ⊗ T ).

Definition 1.25. The measure space (X × Y, S ⊗ T, µ⊗ ν) is the product measure space of
(X,S, µ) and (Y, T, ν).

Straight from the definitions, we know that for every measurable rectangle E × F ,∫
χE×F d(µ⊗ ν) =

∫∫
χE×F dµ dν =

∫∫
χE×F dν dµ.

For a function f defined on X × Y we define f y(x) = f(x, y) and fx(y) = f(x, y). For a
set G ⊆ X × Y , we define Gy = {x ∈ X : (x, y) ∈ G} and Gx = {y ∈ Y : (x, y) ∈ G}.

Theorem 1.26 (Fubini). Let f ∈ L1(µ⊗ ν) and assume µ⊗ ν is σ-finite. Then for almost
every y, f y ∈ L1(µ). Moreover, the function

F (y) =

∫
f y dµ

has F ∈ L1(ν), and ∫
f d(µ⊗ ν) =

∫∫
f y dµ dν =

∫∫
fx dν dµ.

The assumption of σ-finiteness is not optional here, and Fubini’s theorem can fail for
large cardinality measure spaces.

Definition 1.27. Let M be a family of subsets of X such that for every countable chain of
An in M and

⋃
nAn = A or

⋂
nAn = A, A ∈M . Then we say M is a monotone class .

If R is a ring of sets, then the smallest monotone class M containing R is also a ring,
and it is not hard to see that M is the smallest σ-algebra containing R.

Lemma 1.28. Let G ∈ S ⊗ T . Then:

1. Gx ∈ T and Gy ∈ S.

2. x 7→ ν(Gx) and y 7→ µ(Gy) are measurable.

13



3. One has

µ⊗ ν(G) =

∫
(x 7→ ν(Gx)) dµ(x) =

∫
(y 7→ µ(Gy)) dν(y) =

∫∫
χG dµ dν.

Proof. This is obvious if G is a measurable rectangle. We shall show that the algebra of
sets on which this claim holds is a monotone class, hence a σ-algebra. Clearly if

⋃
nGn = G

then G has the property. Given x ∈ X,
⋃
n(Gn)x = Gx, so Gx ∈ T . Therefore the chain

of functions x 7→ ν(Gn)x converges to x 7→ ν(Gx) which is therefore measurable. So by the
monotone convergence theorem,

lim
n
µ⊗ ν(Gn) = lim

n

∫
(x 7→ ν((Gn)x) dµ(x) =

∫
(x 7→ ν(Gx) dµ(x) = µ⊗ ν(G).

So this algebra is closed under ascending chains. The proof in the other direction is similar
but you have to start by assuming that µ⊗ ν(G1) <∞.

Lemma 1.29. Let f ≥ 0 be S ⊗ T -measurable. Then∫
f dµ⊗ ν =

∫∫
f dµ dν.

Proof. Let {fn} be a chain of ISFs. This claim is obvious for ISF, so the monotone conver-
gence theorem on the f yn for each y ∈ Y .

Theorem 1.30 (Tonelli). If f is S ⊗ T -measurable, g(x) = ||f(x)||, gy ∈ L1(µ), and (y 7→∫
gy dµ) ∈ L1(ν), then f ∈ L1(µ⊗ ν).

Proof. Clear by the lemmata.

Proof of Fubini’s theorem. Let g(x, y) = ||f(x, y)||. Then if {fn} is a sequence of ISF con-
verging to f , g dominates the fn. Apply the dominated convergence theorem twice, once for
each integral.

1.4 Duality

Fix a normed space V . We consider properties of V ∗. Since C is complete, V ∗ is a Banach
space; in particular, V ∗∗ is a Banach space. So we can always embed V in a Banach space
by the mapping

V → V ∗∗

v 7→ (ϕ 7→ ϕ(v)).

However, V ∗∗ is rarely the completion of V if V is infinite-dimensional. Moreover, the
topology of V ∗ is a bit awkward to work with, since a convergence in operator norm is much
stronger than convergence pointwise.

Definition 1.31. The weakstar topology of V ∗ is the initial topology such that every evalu-
ation ϕ 7→ ϕ(v) is continuous.

14



In other words, the weakstar topology is the topology of pointwise convergence.

Theorem 1.32 (Banach-Alaoglu). Let B be the closed unit ball of V ∗. Then B is weakstar
compact.

Like the Hanh-Banach and Krein-Milman theorems, the proof of Banach-Alaoglu uses the
axiom of choice. However, the Banach-Alaoglu theorem is not really nonconstructive, since
if V is separable, we can use a diagonalization argument to prove it instead. Banach-Alaoglu
generalizes to locally convex spaces.

Proof. Let
Dv = {z ∈ C : |z| ≤ ||v||}

and D =
∏

v∈V Dv. By Tychonoff’s theorem, D is compact. Moreover, there is a natural
embedding

ι : V ∗ → D

f 7→ {f(v)}v∈V .

Since the product topology is the topology of pointwise convergence, ι is a homeomorphism
V ∗ → ι(V ∗). So we just need to show that ι(V ∗) is closed. So let {{fα(v)}v∈V }α∈A be a
net in D, which converges to a {ϕv}v∈V . Then f(v) = ϕv is a linear functional and fα → f
pointwise so {ϕv}v∈V ∈ ι(V ∗).

Now we compute the duals of the main examples of Banach spaces we have presented so
far.

Theorem 1.33. Let p, q ∈ [1,∞] and assume µ is σ-finite.

1

p
+

1

q
= 1.

Then (Lp(µ))∗ = Lq(µ).

Actually, this theorem is true without the σ-finiteness; however, it becomes much more
difficult.

Proof. For g ∈ Lq, one has ||g||p∗ ≤ ||g||q by Holder’s inequality and by taking larger and
larger measurable sets E and considering

∫
E
g, we check ||g||p∗ ≥ ||g||q. So we just need to

show that the map Lq → Lp
∗

is surjective.
If h ∈ Lp and X splits into finite measure spaces Xk we put hk = χXkh, so

∑
k hk = h

in Lp by the dominated convergence theorem. If ϕ ∈ Lp∗ then ϕ(
∑

k hk) =
∑

k ϕ(hk) so we
might as well assume X = X1, viz. µ(X) < ∞. Then L∞ ⊆ Lp, so ϕ ∈ (L∞)∗. We can
define an absolutely continuous measure ν by ν(A) = ϕ(χA), and by the Radon-Nikodym
theorem, there is a Radon-Nikodym derivative f of ν.

Let Yn = {x ∈ X : |f(x)| ≤ n} and let g = f/|f |q−2, where g(x) = 0 if f(x) = 0, and
gn = χYngn. Then |g|p = |f |q and∫

Yn

|f |q =

∫
gnf = ϕ(gn) � ||gn||p � ||fn||Lp(Yn).

So ||f ||Lq(Yn) <∞, and by the monotone convergence theorem, f ∈ Lq.
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1.5 Vector lattices

We now consider the natural order structure of a space.

Definition 1.34. A vector lattice is a vector space V equipped with a partial order ≤ which
is translation-invariant such that (V,≤) is a lattice, and such that for each c ≥ 0 and x ≤ y,
cx ≤ cy.

Recall that a lattice is just a poset which is closed under finite joins ∨ (suprema) and
meets ∧ (infima). Actually, we just need to check that V is a semilattice, since multiplication
by −1 implies that a semilattice is already a lattice.

If V is a vector lattice and v ∈ V , we define f± = ±f ∨ 0. Then f = f+ − f− and we
define the absolute value (or valuation) |f | = f+ + f−.

Definition 1.35. A Banach lattice is a vector lattice V which is a Banach lattice, such that
|x| ≤ |y| whenever ||x|| ≤ ||y||.

Example 1.36. A function space mapping into R is usually a Banach lattice with the
natural ordering, f ≤ g iff for every x, f(x) ≤ g(x). For example, C(X) is a lattice. Spaces
of operators are Banach lattices as well, whose positive elements are precisely the positive
operators; as are spaces of signed measures, where the positive measures are the positive
elements.

Theorem 1.37. Let V be a Banach lattice. There is a natural ordering on V ∗, such that
f ∈ V ∗ is positive iff for each positive v ∈ V , f(v) ≥ 0, and such that f ≤ g iff for every
positive v ∈ V , f(v) ≤ g(v).

Proof. Take the definition of positive functionals as in the statement of the theorem. If f
and −f are both positive, each v = v+ − v− has f(v+) ≥ 0 but f(v−) ≤ 0. So f(v) = 0.
Since v was arbitrary, f = 0.

Given f ∈ V ∗, define
f+(v) = sup

0≤x≤v
f(x)

for v ≥ 0. Then f+ ≥ f , and f+ is finite because if x ≤ v, |f(x)| ≤ ||f ||||v||. Moreover, if
v, w ≥ 0, it is easy to check f+(v+w) = f+(v) + f+(w). So f+ is positive-linear, so extends
to all of V and so f+ ∈ V ∗.

Clearly f+− f ≥ 0. We need to show this is optimal, i.e. f+ = f ∨ 0. Assume g ≥ f ∨ 0.
Then for 0 ≤ x ≤ v, f(x) ≤ g(x) ≤ g(v), so taking the sup over x we have f+(v) ≤ g(v).
The other direction is similar. So f+ = f ∨ 0.

Fix a compact Hausdorff space X, |X| ≥ 2 (so in particular, every set which separates
points is nonempty). Let us now study the behavior of sublattices of C(X) = C(X → R).

Theorem 1.38 (Dini). Let L be a sublattice of C(X), and define g(x) = inff∈L f(x). For
each ε > 0, there exists a h ∈ L such that g ≤ h ≤ g + ε.

Proof. For each f ∈ L let Uf = {x ∈ X : f(x)− g(x) ≤ ε}. Then the Uf are an open cover
of X, which has a finite subcover by functions f1, . . . , fk. Take h =

∧
j≤k fj.
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When can a lattice be used to approximate any function in C(X)? A necessary condition
is that the lattice strongly separates points. This turns out to be sufficient as well.

Definition 1.39. A set A ⊆ C(X) separates points if for each x, y ∈ X, there is an f ∈ A
such that f(x) 6= f(y). If, in addition, the constant functions R ⊆ A, then A strongly
separates points .

Theorem 1.40 (Stone-Weierstrass). If L ⊆ C(X) is a sub-vector lattice or a subalgebra
which strongly separates points, then L is dense in C(X).

The lattice case is also called the Kakutani-Krein theorem.

Lemma 1.41. Let L be a sublattice of C(X) which separates points and is closed under
multiplication and addition by elements of R. Then if B ⊆ X is compact, p ∈ X \ B, and
a, b ∈ R, there is a g ∈ L such that g ≥ a, g(p) = a and g > b on B.

Proof. For each x ∈ B there exists gx ∈ L such that gx(p) = a and gx(x) = b + 1. Let
Ux = {y ∈ X : gx(y) > b}. Since x ∈ Ux, the Ux are an open cover of B with finite subcover
Ux1 , . . . , Uxk . Take g = a ∨

∨
j≤k gxk .

Lemma 1.42. Assume that L is a closed unital subalgebra of C(X). Then L is a lattice.

Proof. Choose ε > 0 and apply the classical Weierstrass theorem to [−1, 1] to find a polyno-
mial Pε which approximates | · | in L∞-norm by ε. Then for each f ∈ L, we can approximate
|f | by Pε ◦ f . Since L is unital, Pε ◦ f ∈ L. So |f | ∈ L, since L is closed. The lattice
operations ∨ and ∧ can be expressed in terms of algebra operations + and ·, and | · |, so L
is closed under lattice operations.

Proof of Stone-Weierstrass. First consider the case that L is a lattice. Given f ∈ C(X),
define Lf = {g ∈ L : g ≥ f}. Then Lf is a sublattice of L. Given x ∈ X, δ > 0, the set
B = {y ∈ X : f(y) ≥ f(x) + δ} is closed. Since X is compact, there is an M > 0 such that
f < M . Apply Lemma 1.41 with a = f(x) + δ and b = M , so there is a g ∈ L such that
g ≥ f(x) + δ, g(x) = f(x) + δ and g > M on B. So f ≤ g ≤ g + δ, so f =

∧
Lf . Therefore

by Dini’s theorem, there is an h ∈ L with the desired properties.
For the algebra case, since L strongly separates points, L is unital. Therefore L is a

closed unital algebra, L is a closed lattice whose closure is C(X), by Lemma 1.42 and the
above case. So L = C(X).

This even extends to decaying functions on locally compact Hausdorff spaces, by taking
the one-point compactification.

1.6 Positive Radon measures

The usual construction of measures by ISF is somewhat unnatural when we have a nice
topology, since then we can define integration in terms of continuous functions. Clearly “nice”
in this context implies locally compact Hausdorff; these conditions are also sufficient (though
σ-compactness also helps). Throughout this section, we fix a locally compact Hausdorff space
X and consider the space Cc(X) of compactly supported continuous functions X → C.
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We have not given a topology on Cc(X), so a functional is just an element of Hom(Cc(X),C)
for now.

Definition 1.43. A positive Radon measure on X is a functional on Cc(X).

Let us prove that a positive Radon measure is actually a measure in a natural way. First,
we put a topology on Cc(X). We start by putting the L∞-topology on Cc(U) for each open
set U ⊆ X with compact closure.

Definition 1.44. The inductive limit topology of Cc(X) is the final (i.e. strongest) topology
on Cc(X) such that ϕ : Cc(X) → Y is continuous provided that for each open set U ⊆ X
with compact closure, ϕ|Cc(U) is continuous.

In other words, the inductive limit topology is the final topology which makes the natural
maps Cc(U)→ Cc(X) continuous. A positive Radon measure is continuous for the inductive
limit topology, as can be seen by taking an h ∈ Cc(X) which is 1 on U , so ||ϕ||Cc(U) ≤ ϕ(h).

Now we need some general facts about locally compact Hausdorff spaces.

Definition 1.45. A (continuous) partition of unity on a subordinate to an open cover
U1, . . . , Un is a family of (continuous) functions f1, . . . , fn which are compactly supported in
Ui, such that

∑
i fi = 1.

Theorem 1.46. For any finite open cover U of a compact set, there is a partition of unity
subordinate to U .

Lemma 1.47. Let K ⊆ X be compact. If U1, . . . , Un is an open cover of K there are
compact sets K1, . . . , Kn, Ki ⊆ Ui, which cover K.

Proof. For each x ∈ K choose a j such that Uj 3 x and an open set Vx 3 x such that

Vx ⊂ V x ⊂ Uj.

Then the Vx are an open cover of K so they reduce to a finite subcover Vx1 , . . . , Vxp . For

each k ≤ p choose a jk ≤ n such that Vxk ⊆ Ujk and let Wj =
⋃
jk=j Vk ⊆ Uj. Then W j ⊆ Uj

and the W j contain the Vxs, so are a compact cover of K.

Proof of Theorem 1.46. Fix a compact set K. By the lemma, we can choose Dj ⊆ Uj a
compact cover of K and gj supported in Uj with gj ≥ 1 on Dj, and h =

∑
j gj. Then h ≥ 1

on C and put k = h∨1 ≥ 1. So 1/k exists and we can put fj = gj/k, to force
∑

j fj = 1.

Definition 1.48. A content is a function defined on sets into [0,∞] which is monotone,
countably subadditive, and finitely additive, and which carries compact sets to [0,∞). A
content µ is said to be inner regular if for every open set U ,

µ(U) = sup
V⊆U
V open

V compact

µ(V ).
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Fix a positive Radon measure ϕ, and define an inner-regular content µ on the topology
T on X by

µ : T → [0,∞]

U 7→ sup
f∈Cc(U)
0≤f≤1

ϕ(f).

Given a content ν, we can extend ν to an outer measure ν∗ on the power set P by

ν∗(A) = inf
U⊆A
U∈T

ν(U).

In turn, then, ν∗ restricts to a measure, also called ν, on its measurable σ-algebra, by the
Caratheodory construction. So, in particular, µ gives rise to a measure.

Definition 1.49. Let ν be a Borel measure. We say that ν is outer regular if for every Borel
set E,

µ(E) = inf
E⊆U
U∈T

µ(U)

and inner regular if for every open set U ,

µ(U) = sup
V⊆U
V open

V compact

µ(V ).

We state the main result.

Theorem 1.50 (Riesz-Markov representation theorem). µ is a positive Borel measure which
is both inner and outer regular, and ϕ is the unique functional such that for every f ∈ Cc(X),

ϕ(f) =

∫
f dµ.

The proof of the Riesz-Markov representation theorem is quite long, so we only sketch it.

Proof sketch. Let ν∗ be an outer measure which is finitely additive and inner regular on the
topology of X, and let U be open. Then Caratheodory’s criterion holds for U and ν∗ on
open sets. Approximating any subset of X by an open set, Caratheodory’s criterion holds
on the power set for U and ν∗. So U is ν∗-measurable, and ν∗ restricts to a Borel measure
ν. In particular, µ is a Borel measure.

If f ∈ Cc(X), and f ≥ 1 on an open set U , ϕ(f) ≥ µ∗(U). Approximating any set A
by an open set, we see that ϕ(f) ≥ µ∗(A) whenever f ≥ 1 on A. On the other hand, if
f ≤ 1 on A, a monotone convergence argument shows that µ∗(A) ≥ ϕ(f). Since Cc(X)
is a Banach lattice, we can replace f with f+ and by decomposing X into a chain of sets
Xn{x ∈ X : f(x) ≥ nε} and summing the f |Xn \ f |Xn−1 we prove

ϕ(f) =

∫
f dµ.
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Since µ was inner and outer regular as a content, approximation by open sets implies
regularity on Borel sets. Moreover, if ψ is a positive Radon measure, define a content ν by

ν(U) = sup
f≤χU
f∈Cc(U)

∫
f dν.

If ν = µ it follows that ψ = ϕ.

Notice that on the other hand, a complex measure ν on Cc(X) gives rise to a functional
ψ by

ψ(f) =

∫
f dν.

The positive part of ψ is in fact the positive part of ν.
Now if S is a locally compact semigroup, we let M(S) be the set of all finite Radon

measures on S. This is a convolution algebra, with

µ ∗ ν(f) =

∫∫
S

f(xy) dµ(x) dν(y).

1.7 Baire categories

Now we look at a topological analogue of “measure zero.”

Definition 1.51. Let X be a topological space. A set S ⊆ X is nowhere dense if for every
open set U , S ∩ U is not dense in U . A set T ⊆ X is meager or of the first category if T is
the countable union of nowhere dense sets. A set W ⊆ X is of the second category if it is
not of the first category, or comeager if it is the complement of a meager set.

Lemma 1.52. For a topological space, the following are equivalent:

1. Every countable union of closed sets with empty interior has empty interior.

2. Every countable intersection of open dense sets is dense.

3. Every nonempty open set is of the second category.

This is basically obvious.

Definition 1.53. A topological space is a Baire space if one (and all) of the above criteria
hold.

Theorem 1.54 (Baire category theorem). Every completely pseudometrizable or locally
compact Hausdorff space is Baire.

For example, a Banach space is Baire.
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Proof. Let Un be a sequence of open dense sets, and let W be open, in the space X. Then
W ∩ U1 is nonempty and open, say x1 ∈ W ∩ U1. If X is pseudometrizable, then there is
a ε1 ∈ (0, 1) such that the open ball V1 = B(x1, ε1) satisfies K1 = B(x1, ε1) ⊆ W ∩ U1; if
X is locally compact Hausdorff, then there is a compact set with nonempty interior V1 ⊆
K1 ⊆ W ∩ U1. Iterate using the denseness of the Un and the axiom of choice to construct a
sequence xn ∈ Vn ⊆ Kn ⊆ Vn−1 ∩ Un. If X is pseudometrizable, then we can always choose
εn < 1/n, so the xn are a Cauchy sequence. Otherwise,

⋂
nKn is nonempty anyways by

the finite intersection property. Either way, we can find an x ∈
⋂
nKn ⊆

⋂
n Un such that

x ∈ W . So
⋂
n Un is dense.

Actually, we didn’t use the full axiom of choice. The Baire category theorem is equivalent
over ZF to the following axiom.

Axiom 1.55 (Axiom of dependent choice). Let X be a nonempty set and R be a binary
relation. If, for every a ∈ X, there is a b ∈ X such that aRx, then there is a sequence of xn
such that xnRxn+1.

The axiom of dependent choice is not strong enough to prove the existence of nonmeasur-
able sets, for example. Moreover, if X is assumed to be separable, then the Baire category
theorem just follows from induction, without even dependent choice.

Theorem 1.56 (uniform boundedness principle). Let X be a Banach space and Y a normed
space, and F be a set of linear mappings X → Y . If for every x ∈ X,

sup
T∈F
||Tx|| <∞,

then
sup
T∈F
||x||=1

||Tx|| = sup
T∈F
||T ||.

The uniform boundedness principle is also called the Banach-Steinhaus theorem. The
proof is a standard application of the Baire category theorem: construct a chain of closed
sets whose union is the entire space, which implies that one is not meager.

Proof. Let
Xn = {x ∈ X : sup

T∈F
||Tx|| ≤ n}.

Then the Xn are a closed chain whose union is X. So by the Baire category theorem, there
is an x ∈ X, m > 0, and ε > 0 such that B(x, ε) ⊂ Xm. So if ||u|| < 1 and T ∈ F ,

||Tu|| = ε−1||T (x+ εu)− Tx|| ≤ ε−1||T (x+ εu)||+ ε−1||Tx|| ≤ 2
m

ε
.

Taking the sup over u of both sides,

sup
T∈F
||T || ≤ 2

m

ε
<∞.
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Theorem 1.57 (open mapping theorem). If A : X → Y is a surjective continuous linear
mapping between Banach spaces, then A is open.

The open mapping theorem is also called the Banach-Schauder theorem.

Proof. We must show that if U is the open unit ball of X, then A(U) is open. Since
X =

⋃
k kU , Y =

⋃
k A(kU). By the Baire category theorem, there is a k > 0, ε > 0, and

y ∈ Y such that B(y, ε) ⊆ A(kU). If V is the unit ball of Y , v ∈ V , y + εv ∈ A(kU) so

εv ∈ A(kU) + A(kU) ⊆ A(2kU).

So if L = 2k/ε, V ⊆ A(LU).
In other words, for every y ∈ Y and ε > 0 there is an x ∈ X such that ||x|| ≤ L||y||

and ||y − Ax|| < ε. In particular, given y ∈ V we can choose x1 such that ||x1|| ≤ L and
||x− Ax1|| < 1/2. Choose ||xn+1|| ≤ L2−n such that

||y − A(x1 + · · ·+ xn)− Axn+1|| < 2−n−1,

by induction and the axiom of (dependent) choice. The sequence of partial sums is therefore
Cauchy, so we can put x =

∑
n xn, and Ax = y by the above estimates. Also

||x|| = lim
n→∞

∣∣∣∣∣
∣∣∣∣∣∑
k≤n

xk

∣∣∣∣∣
∣∣∣∣∣ ≤

∞∑
n=1

xn < 2L.

So y ∈ A(2LU). Therefore V ⊆ A(2LU) which was to be shown.

Theorem 1.58 (closed graph theorem). Let A : X → Y be a linear mapping between
Banach spaces. If the graph of A is closed in X ⊕ Y , then A is continuous.

Notice that while there isn’t a canonical norm for X ⊕ Y , any `p norm will do; since
X ⊕ Y is a finite direct sum, all `p norms are equivalent. In particular, X ⊕ Y is a Banach
space.

Proof. Let Γ be the graph of A, which is equipped with a natural (linear, bijective) projection
πX : Γ→ X. Since

||P (x,Ax)|| = ||x|| ≤ ||(x,Ax)||,

||P || ≤ 1 <∞. So by the open mapping theorem,

||Tx|| � ||P−1x||+ ||x|| � ||x||.
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Chapter 2

Complex analysis

Throughout, we identify R2 = C and write z = x+ iy, dz = dx+ idy, so that dz = dx− idy.
Then

dz ∧ dz = 2idx ∧ dy = 2idA.

We thus write 2∂f = ∂xf − i∂yf and 2f = ∂xf + i∂yf , so that

df = ∂f dz + ∂f dz.

We let K be a compact set in an Ω-precompact open set ω, where Ω is open in C. So we
have inclusions

K ⊂ ω ⊂ ω ⊂ Ω ⊆ C.

We will always assume that ∂ω is a positively oriented, piecewise-C1 Jordan curve.

2.1 Cauchy-Green formula

Making the change of variable dA 7→ dz ∧ dz in Green’s formula, we arrive at the following
generalization of the Cauchy integal formula.

Theorem 2.1 (Cauchy-Green). Let f ∈ C1(ω). For each ζ ∈ ω,

f(ζ) =
1

2πi

(∫
∂ω

f(z)

z − ζ
dz +

∫∫
ω

∂f(z)

z − ζ
dz ∧ dz

)
.

Definition 2.2. The Cauchy-Riemann equation is the equation

∂f = 0.

If f ∈ C1(ω) solves the Cauchy-Riemann equation, we say that f is a holomorphic function,
written f ∈ A(ω).

So in case f is holomorphic, we recover the classical Cauchy integral formula from the
Cauchy-Green theorem.
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Theorem 2.3. Let µ be a finite Borel measure on C with compact support K. Let

u(ζ) =

∫
C

dµ(z)

z − ζ
.

Then u is holomorphic on Kc. If ϕ ∈ Ck(ω) and 2πiµ = ϕ dz ∧ dz, then u ∈ Ck(ω) and
u = ϕ on ω. In particular, if µ solves the Cauchy-Riemann equation in the distributional
sense, then µ is holomorphic.

Corollary 2.4 (Cauchy). If u ∈ A(Ω) then

||∂ju||L∞(K) �K,j ||u||L1(ω).

Proof. Differentiate under the integral sign in the Cauchy-Green formula, and then use the
triangle inequality.

Corollary 2.5. If we are given a sequence of un ∈ A(Ω) which converges locally uniformly
to u, then u ∈ A(Ω).

Proof. This is obvious for uniform convergence, but holomorphy is a local property.

Corollary 2.6 (Montel). If we are given a sequence in A(Ω) which is locally bounded, then
there is a locally uniformly convergent subsequence, whose limit is in particular holomorphic.

Proof. Use Arzela-Ascoli on Cauchy’s inequality. Then use locally uniform convergence.

Corollary 2.7 (root test). If u(z) =
∑

n anz
n, then u is analytic on D(0, lim supn |an|1/n).

Corollary 2.8 (Taylor). If u ∈ A(D(0, R)), then u ∈ C∞(D(0, R)) and for z ∈ D(0, R) we
have

u(z) =
∞∑
n=0

∂nu(0)

n!
zn.

Proof. Differentiate under the integral sign in the Cauchy-Green formula, then use the root
test.

Corollary 2.9. If Ω is connected and u ∈ A(Ω), and there is a z ∈ Ω such that for all j,
∂ju(z) = 0, then u = 0.

Proof. Taylor series propagate to connected components.

Corollary 2.10 (Weierstrass preparation theorem). If u ∈ A(Ω), 0 ∈ Ω, u 6= 0, and u(0) = 0
with order k, then there is a v ∈ A(Ω) so that u(z) = zkv(z).

Proof. Factor the zk out of the Taylor series.

Corollary 2.11. If u ∈ A(ω) ∩ C(ω) then

||u||L∞(ω) = ||u||L∞(∂ω).

24



2.2 Conformal mappings

Definition 2.12. A function between open sets f : U → V is biholomorphic, conformal,
angle-preserving, or a complex diffeomorphism if f is a bijection and f and f−1 are both
holomorphic.

If such a conformal map exists then U and V are conformally equivalent or conformal.

Lemma 2.13. Let F : D → D be conformal and F (0) = 0. Then ∃ω ∈ S1 such that for
each z ∈ D,

F (z) = ωz.

Proof. Apply Schwarz to F and F−1 so that

|z| ≤ |F (z)| ≤ |z|.

Theorem 2.14. F : D→ D is conformal if and only if there exist unique a ∈ D and ω ∈ S1

such that

F (z) = ω
z − a
1− az

.

Moreover, a can be chosen so that F (a) = 0, and

F−1(z) = ω−1 z + a

1 + az
.

Proof. Suppose that F is conformal and let G : D→ D be given by

G(z) =
z − a
1− az

.

Then since |az| < 1, G ◦ F−1 is conformal and G(a) = 0, thus G ◦ F−1(0) = 0. So by 2.13,
G ◦ F−1(z) = ωz for some ω ∈ S1. Existence of ω is immediate (how could one rotate the
disk at two different speeds?) and since a is determined by the preimage of 0, a is unique as
well.

On the other hand, if

F (z) = ω
z − a
1− az

,

then since |az| < 1, F is holomorphic, as is its inverse (that it actually is an inverse is
immediate).

Theorem 2.15 (Riemann mapping theorem). If U ⊆ C is open and simply connected, then
U is conformal with D or C.

Lemma 2.16. Suppose that U 6= C is simply connected and z0 ∈ U . Then the space

F = {f : U → D | f is holomorphic and injective, and f(z0) = 0}

is a nonempty normal family.
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Proof. For convenience, let V be the strip

V = {z ∈ C : | Im z| < π}.

Let a /∈ U and observe that z − a 6= 0. Since exp has a period of 2πi, exp is a conformal
map V → C \ {0}. In particular, its inverse log is conformal C \ {0} → V . Now let
`(z) = log(z − a); ` is holomorphic and injective.

Suppose that there does not exist δ > 0 such that for each z ∈ U ,

|`(z)− `(z0)− 2πi| < δ.

Then there is a sequence zn in U such that `(zn) → `(z0) + 2πi. By continuity of exp,
zn → z0e

2πi = z0. So `(zn)→ `(z0) 6= `(z0) + 2πi, which is a contradiction, so δ exists.
Let

g(z) =
1

`(z)− `(z0)− 2πi
.

Then g is clearly injective and holomorphic and |g| < δ−1, so g is bounded, and

f(z) =
g(z)− g(z0)

δ−1 + |g(z0)|

satisfies f ∈ F . Thus F is nonempty.
Moreover, each f ∈ F satisfies |f | < 1, so F is uniformly bounded by 1; therefore F is

normal by Montel’s theorem.

Lemma 2.17. With F and z0 as in 2.16, there exists a conformal F ∈ F and if

λ = sup
f∈F
|f ′(z0)|

then |F ′(z0)| = λ.

F is precompact in O, but this doesn’t mean that F is compact! So, while we want to
use compactness to prove the existence of a function F that satisfies the desired hypotheses,
we’ll have to prove that in fact F ∈ F rather than F ∈ ∂F .

Proof of 2.17. Since elements of F are injective, their derivatives are nonzero by the argu-
ment principle, so λ > 0, and there is a sequence fn such that |f ′n(z0)| → λ. By Montel’s
theorem, it has a convergent subsequence with a limit F ∈ O, such that F (z0) = 0 and
F ′(z0) = λ by Weierstrass’ theorem. Moreover, |F | ≤ 1. F is nonconstant since λ > 0, so
by the open mapping theorem, |F | < 1, and by Hurwitz’ theorem, F is injective. Therefore
F ∈ F .

Moreover, if F is not surjective, then there exists w ∈ D \ F (U). Let

ψ(z) =
w − z
1− wz

.

By 2.14, ψ is an automorphism of D, ψ(w) = 0 and |ψ ◦ F | > 0. Now define

g(z) = exp

(
logψ(F (z))

2

)
.
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Then g(z0) =
√
w. By 2.14 again,

ψ̃(z) =

√
w − z

1−
√
wz

is also an automorphism of D and ψ̃(
√
w) = 0. Let G = ψ̃ ◦ g. Then G ∈ F .

Now let s(z) = z2 and ϕ = ψ−1 ◦ s ◦ ψ̃−1. Then ϕ(0) = 0 so by Schwarz |ϕ(z)| ≤ |z|.
Moreover, ϕ is not injective anywhere, so |ϕ′| < 1. But F = ϕ ◦G so

λ = |F ′(z0)| = |ϕ′(0)G′(z0)| < |G′(z0)| ≤ λ

which is a contradiction.
So F is surjective. Therefore the inverse function theorem implies that F is conformal.

Clearly this lemma implies the Riemann mapping theorem.

2.3 Approximation by polynomials

Let K ⊂ Ω ⊆ C be compact. If K is the compactification of a disc, then it is easy to
uniformly approximate holomorphic functions on K by polynomials, just by truncating the
Taylor series.

Example 2.18. Let K be the compactification of an annulus and assume u has a pole in
the center of K. If pj → u on K and the pj are entire functions, then in particular pj → u
on ∂K, so they are a Cauchy sequence in A(K), so on a disk containing K, and in particular
the pole of u. Therefore pj → p, an entire function, even though u has a pole. Notice that
we can still approximate u by meromorphic functions, though.

Theorem 2.19 (Runge approximation theorem). The following are equivalent.

1. If u is holomorphic near K, then there are functions uj ∈ A(Ω) such that uj → u
uniformly on K.

2. The complement Ω \K has no Ω-precompact connected components.

3. For each z ∈ Ω \K there is an f ∈ A(Ω) such that

|f(z)| > ||f ||L∞(K).

Proof. Let us first prove that not-2 implies not-3 and not-1.
If not-2, then there is a K-precompact component O of Ω \K, so ∂O ⊆ K. If f ∈ A(Ω),

then
||f ||L∞(O) = ||f ||L∞(∂O) ≤ ||f ||L∞(K)

by the maximum principle, implying not-3. Moreover, if 1 were true, then for every f
holomorphic near K, we could approximate f by fj ∈ A(Ω) uniformly. We have

||fj − fk||L∞(O) ≤ ||fj − fk||L∞(K),
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so the fj form a Cauchy sequence in L∞(K), which converge to a holomorphic function
F ∈ A(O). But if f has a pole in O, then f 6= O, a contradiction, so we have not-1.

Now we show 1 and 2 imply 3. Let L = K ∪ D(z, ε) where ε < d(z,K). Then every
component of L is either a component of K or else D(z, ε), and L satisfies the hypotheses
of 2, so in particular satisfies the hypotheses of 1. Let u ∈ A(L) be given by u = 1 near z
and u on K. By 1, u is uniformly approximable in A(Ω). Assume f ∈ A(Ω) is such that
||f − u||L∞(L) < δ for δ small enough; then f witnesses 3.

Finally we show 2 implies 1. Let X2 be the set of restrictions of holomorphic functions
to K, and let X1 be the set of restrictions of holomorphic functions on Ω to K. Then
X1 ⊂ X2 ⊂ C(K), and 1 holds iff X1 = X2. So we must show X2 ⊆ X1. By the Hanh-
Banach and Riesz-Markov theorems, this is equivalent to showing that for every finite Borel
measure µ with support in K and every f ∈ A(Ω),

∫
f dµ = 0. In particular, we can prove

this with the addition assumption that f is only holomorphic near K. So fix such a f, µ.
Let ϕ be the holomorphic function given by µ. Since ϕ = 0 on C \ Ω, ϕ = 0 on any

component of C \K. Moreover,

1

z − ζ
= −

∞∑
j=0

ζ−j−1zj

whenever the sum converges, i.e. for |ζ| large enough. Therefore

ϕ(ζ) = −
∞∑
j=0

ζ−j−1

∫
zj dµ(z) = 0

for |ζ| large enough. By 2, Ω \K has no Ω-precompact components, so every component of
Ω \K touches ∂Ω or is unbounded. Therefore ϕ = 0 on C \K.

Let ψ be a cutoff which is 1 whenever f is holomorphic. Then, taking ω = C, we have

ψ(z) =
1

2πi

∫∫
C

∂ψ(ζ)

ζ − z
dζ ∧ dζ.

For each z ∈ K, the function

ζ 7→ ∂ψ(ζ)f(ζ)

ζ − z
is smooth since ζ /∈ K. So we are entitled to use Fubini’s theorem to prove∫

C
f dµ =

∫
C
ψf dµ =

1

2πi

∫∫∫
C2

∂ψ(ζ)f(ζ)

ζ − z
dζ ∧ dζ dµ(z)

=
1

2πi

∫∫
C
f(ζ)∂ψ(ζ)

∫
C

dµ(z)

ζ − z
dζ ∧ dζ = 0.

This proves 1.

Corollary 2.20. Let K ⊂ C be compact, such that C \ K is connected. Every function
which is holomorphic near K can be approximated by polynomials uniformly on K.
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Definition 2.21. The holomorphically convex hull of K in Ω, written K̂, is the set of z ∈ Ω
such that for every f ∈ A(Ω),

|f(z)| ≤ ||f ||L∞(K).

If K = K̂, we say that K is holomorphically convex .

Example 2.22. Let K be as in the previous example; then K̂ is the outer disc in the
definition of K as an annulus.

It is easy to check that
d(K,C \ Ω) = d(K̂,C \ Ω).

Recall that chK denotes the convex hull of K. If K is convex, then K is topologically
D(0, 1), which is clearly holomorphically convex by Runge’s approximation theorem. But
the connection between convexity and holomorphic convexity is stronger than that.

Proposition 2.23. For any K, K̂ ⊆ chK.

Proof. It is easy to check that chK is the intersection of half-planes

Ha,c = {z ∈ C : Re(az) ≤ c}.

Fix a ∈ C, c ∈ R; we will show K̂ ⊂ Ha,c. Let z ∈ K̂. Then |eaz| ≤ maxw∈K |eaw|. So
Re eaz ≤ maxw∈W Re |eaw|, implying

Re az ≤ max
w∈K

aw ≤ c.

Therefore z ∈ K̂.

Moreover, K̂ is the union of K with all O, for each C-precompact connected component
O of Ω \K.

Definition 2.24. The polynomially convex hull of a compact set K is the set

K̂ = {z ∈ C : |p(z)| ≤ max
w∈K
|p(w)|for every polynomialp}.

If K = K̂, then K is polynomially convex .

2.4 Sheaves

Let X be a topological space. By Open(X) we will denote the posetal category of open sets
in X; that is, objects are open sets in X and morphisms are inclusions.

Definition 2.25. A presheaf on X is a functor Open(X)op → C for some concrete category
C.

If U ⊆ X is an open set, and F : Open(X)op → C a presheaf on X, then elements of
F(U) are called sections of F at U . Sections of F at X are called global sections .
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To motivate this terminology, let us assume that we are given a fiber bundle π : E → X
(the most trivial case of this is when E = X × Y for some space Y , and π is projection onto
the first factor; as with any notion of bundle, the point is that E is locally a product space.)
Then the sections of π, i.e. the sets π−1(U), are exactly a sheaf (to be defined later), and
thus a presheaf, Open(X)op → Set.

Now notice that every morphism in Open(X)op is epic, so it makes sense to define the
restriction maps f 7→ f |V for sections f ∈ F(U) and V ⊆ U .

Definition 2.26. Let F : Open(X)op → C be a presheaf on X. Assume that for every
open set U ∈ Open(X) and every open cover {Uj} of U we have the following conditions:

1. For every pair of sections f, g ∈ F(U), if we have f |Ui = g|Ui for every i, then f = g.

2. If for every i we have a section fi ∈ F(Ui) such that on intersections, fi|Ui∩Uj = fj|Ui∩Uj ,
then there is a section f ∈ F(U) such that for every i, f |Ui = fi.

Then we say that F is a sheaf on X.

Proposition 2.27. Let F be a sheaf which is only defined on an open base, but otherwise
satisfying all the conditions. Then F uniquely determines a sheaf on the entire topology.

We now put sheaves into a category.

Definition 2.28. Let F ,G : Open(X)op → C be presheaves. A morphism of presheaves
over X is a natural transformation ψ : F → G. If F and G are sheaves, then ψ is a morphism
of sheaves .

That is, a morphism of sheaves ψ : F → G consists of, for each open set U ⊆ X, a
morphism ψ(U) ∈ Hom(F(U),G(U)) such that if U ⊆ V for some open set V ⊆ X, then the
diagram

F(V ) G(V )

F(U) G(U)

ψ(V )

ψ(U)

commutes.
In several complex variables, we are interested in holomorphic germs. The following

family of definitions allows us to talk about germs algebraically.

Definition 2.29. Let C be a category such that for every directed set D in C, a colimit
exists at D, and let x ∈ X. Let F : Open(X)op → C be a sheaf. The stalk of F at x is the
colimit

Fx = lim−→
U∈Dx

F(U)

where Dx is the directed set of all open sets U 3 x. An element of Fx is called a germ of F
at x.
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2.5 Subharmonicity

Definition 2.30. Let X be a topological space. An upper-semicontinuous function on X is
a function u : X → [−∞,∞) such that for each s ∈ R, the preimage of the ray [−∞, s) is
open in X.

Notice that there is a dual notion of lower-semicontinuity, by considering the rays (s,∞].
A function which is both upper- and lower-semicontinuous is just continuous, since open rays
form a base of the topology of R.

Definition 2.31. Let Ω ⊆ Rn be an open set. A subharmonic function on Ω is a upper-
semicontinuous function u : Ω→ [−∞,∞) such that for every compact set K ⊆ Ω and every
continuous function h : K → R which is harmonic in K, if h ≤ u on ∂K, then h ≤ u on K.

This definition makes just as much sense in Cn, or even on a Riemannian manifold; one
just needs a Laplace-Beltrami operator ∆g, so that we have a notion of harmonicity ∆gh = 0.
By the maximum modulus principle, a harmonic function is already subharmonic (since it
cannot attain its maximum on the boundary of a compact set).

Let u be subharmonic. Then if c > 0, cu is subharmonic (simply by replacing h with
ch for each h in the definition of subharmonicity). Moreover, if A is a set of subharmonic
functions and u = supA, then u is subharmonic provided that u is upper-semicontinuous
(simply by considering the h such that v ≤ h for every v ∈ A, which exist since u is upper-
semicontinuous and so finite).

Proposition 2.32. Let u1, . . . be a decreasing sequence of subharmonic functions. Then
u = limj uj is subharmonic.

Proof. Note that

{z ∈ Ω : u(z) < s} =
⋃
j

{z ∈ Ω : uj(s)}

is open so u is upper-semicontinuous. If h,K are as in the definition of subharmonicity and
ε > 0 then the set

{z ∈ ∂K : uj(z) ≥ h(z) + ε}

is compact and decreasing as j → ∞. The intersection of nonempty compact sets is
nonempty, but the intersection is empty by definition of H, so there the sequence is eventually
empty. Therefore uj ≤ h+ ε for j large enough. So u ≤ h.

Now we consider equivalent definitions of subharmonicity.

Proposition 2.33. Let u be an upper-semicontinuous function on Ω ⊆ C. Let δ > 0 and
let Ωδ = {z ∈ Ω : d(z,Ωc) > δ}. The following are equivalent:

1. u is subharmonic.

2. If D ⊆ Ω is a compact disk, and f is a polynomial such that u ≤ f on ∂D, then u ≤ f
in D.
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3. For each z ∈ Ωδ,

2πu(z) ≤
∫ 2π

0

u(z + reiθ) dθ.

4. For each positive measure µ on [0, δ] and each z ∈ Ωδ,

2πµ([0, δ])u(z) ≤
∫ δ

0

∫ 2π

0

u(z + reiθ) dθ dµ(r). (2.1)

5. For each z ∈ Ωδ there is a positive measure µ on [0, δ], such that Equation 2.1 holds
and such that µ((0, δ]) > 0.

Proof. Obviously 1 implies 2 and 3 implies 4 implies 5.
Assume 2. To prove 3, let z ∈ Ωδ and r ≤ δ. Let D be the disk of all ζ such that

|ζ − z| ≤ r. If ϕ(θ) =
∑

k ake
ikθ is a trigonometric polynomial such that u(z + reiθ) ≤ ϕ(θ)

for every θ ∈ [0, 2π], then f(ζ) = a0 + 2
∑

k≥1 ak(ζ − z)k/rk has u ≤ Re f on ∂D, so on D
since f is a polynomial. Plugging in θ = 0, we have

u(z) ≤ a0 =
1

2π

∫ 2π

0

ϕ(θ) dθ. (2.2)

Since the trigonometric polynomials are an algebra, they are dense in the space of continuous
functions. Therefore Equation 2.2 holds for any continuous ϕ. This proves 3.

Assume 5 and let h,K be as in the definition of subharmonicity. If M = supu − h > 0
then u−h = M on some nonempty compact set K0 by semicontinuity of u−h. Let z0 ∈ K0.
Then ∫ 2π

0

∫ δ

0

(u− h)(z0 + reiθ) dµ(r) dθ < 2π(u− h)(z0)µ([0, δ)).

This is a contradiction of 5, so u is subharmonic.

It follows that the class of subharmonic functions is closed under addition, and subhar-
monicity is a local property. Moreover, if f is holomorphic on Ω, it follows that log |f | is
subharmonic: by the maximum modulus principle, |f | does not attain its maximum on a
compact disk D.

Theorem 2.34. Assume Ω ⊆ C is open and connected and u is subharmonic on Ω is not
identically −∞. Then u ∈ L1

loc(Ω) and for any v ∈ C2
comp(Ω), v ≥ 0, 〈u,∆v〉 ≥ 0. If

u ∈ C2(Ω), then ∆u ≥ 0.

Theorem 2.35. Suppose u ∈ L1
loc(Ω) and for every v ∈ C2

comp(Ω), v ≥ 0, 〈u,∆v〉 ≥ 0. Then,
up to a null set, u is subharmonic. In particular, the mollification of u is subharmonic.

From the above theorem we see that for u ∈ L1
loc, then u is subharmonic exactly when

∆u ≥ 0 in the weak sense.

32



2.6 Operator theory

Theorem 2.36 (Schur). Let X be a σ-finite measure space and let K be an integral operator.
If there is a p : X → [0,∞) and a λ > 0 such that∫

X

|K(x, y)|p(y) dy ≤ λp(x)

and ∫
X

|K(x, y)|p(x) dx ≤ λp(y)

then
||K||L2→L2 ≤ λ.

Proof. Let u be an integrable simple function. By the Cauchy-Schwarz inequality and Fu-
bini’s theorem,

||Ku||2L2 =

∫
X

∣∣∣∣∫
X

K(x, y)u(y) dy

∣∣∣∣2 dx ≤
∣∣∣∣∫∫

X2

|K(x, y)|1/2p(y)1/2 |u(y)|
p(y)1/2

|K(x, y)|1/2 dx dy
∣∣∣∣

≤
∫
X

(∫
X

|K(x, y)|p(y) dy

∫
X

|u(y)|2

p(y)
|K(x, y)| dy

)
dx

≤ λ

∫
X

p(x)

p(y)
|K(x, y)||u(y)|2 dy dx

≤ λ2|u(y)|2 dy = λ2||u||2L2 .

Since ISF is dense in L2 we’re done.

As a corollary we can easily compute the `2 norm of a matrix, since every matrix is an
integral operator for counting measure on {1, 2, . . . , n}.

Theorem 2.37. Let A be a self-adjoint operator and

RA(λ) = (A− λ)−1

its resolvent. Then we have

||RA(λ)|| = 1

d(λ, σ(A))
.

Notice the utility of this theorem: we do not assume that A is a bounded linear operator,
so we cannot use the spectral radius theorem.

Proof. Since λ is in the resolvent set, d(λ, σ(A)) > 0. We can assume A is unbounded;
therefore RA is bounded, and its spectrum consists of 0 and the set of all 1/(µ − λ), for
µ ∈ σ(A). By the spectral radius theorem,

||(A− λ)−1|| = sup
µ∈σ(A)

|λ− µ|−1

which proves the claim.
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Part II

Dynamical systems
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Chapter 3

Elementary dynamical systems

Definition 3.1. By a discrete dynamical system we mean a transformation T : X → X.

We think of T n(X) as the state of X at time n.

Definition 3.2. By a continuous dynamical system we mean a family of transformations
ϕt : X → X satisfying the homomorphism assumption ϕt+s = ϕtϕs.

We can always build a continuous system from a discrete one and vice versa. Because
discrete systems are much easier to study, we usually try to reduce the study of dynamical
systems to the study of discrete dynamical systems.

3.1 Types of dynamical systems

Definition 3.3. A periodic point of a dynamical system T is a x such that there is a t with
T t(x) = x.

In dynamical systems, we want to know how many periodic points are there in a dynam-
ical system. This is too specific so it is also common to look for recurrence: if a trajectory
x starts at x0, how often does xn approximate x0?

Definition 3.4. An invariant set Y ⊆ X of a dynamical system T : X → X is a set such
that T−1(A) = A.

Definition 3.5. An invariant measure µ (defined on a σ-algebra Σ) is one such that for
every measurable set A ∈ Σ, T−1(A) ∈ Σ and µ(T−1(A)) = µ(A).

In dynamical systems, we want to study invariant sets and invariant measures. The reason
why we study the pullback in the definition of invariant measure is that A 7→ µ(T−1(A))
is always a measure, but if X = {0, 1}, T (0) = T (1) = 0, µ counting measure, then A 7→
µ(T (A)) is not a measure.

We also will study structural stability, i.e. when a small perturbation of T preserves the
properties of T .

Example 3.6. KAM theory implies that the solar system is at least approximately struc-
turally stable. Therefore the solar system will not collapse in our lifetimes.
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Definition 3.7. Let T : X → X and S : Y → Y be dynamical systems. Then S is
semiconjugate to T , or that T is a factor of S) if there is a surjective π : Y → X such that
T ◦ π = π ◦ S. If π is actually invertible, then S and T are conjugate.

As far as set theory is concerned, conjugacy means that S and T are identical. If we
may assume that π is measure-preserving, smooth, etc., then it will follow that S and T are
identical in the appropriate categories.

Example 3.8. Let T : S1 → S1 be the dynamical system which rotates the circle by 2πα
for some α ∈ R. Let S : R2 \ 0→ R2 \ 0 to be the rotation of the punctured plane by 2πα.
Then T is a factor of S, witnessed by the transformation π : R2 \0→ S1 which sends a point
to its projection onto the circle.

We are mainly interested in T when α is irrational (in which case T is called the irrational
rotation), in which case T has no periodic points. We will show that there are no interesting
examples of invariant sets for T , and in fact if we restrict to Borel measures, there is exactly
one invariant measure of T , namely the Lebesgue measure. There is no structural stability
because the rational numbers are dense in R.

We branch off into different subfields. Let T : X → X be a transformation. If X is
a metric space and T is continuous, then we are studying topological dynamics . If X is a
smooth manifold and T is smooth, then we are studying smooth dynamics . In this case, we
have an auxiliary dynamical system defined by the differential form df : TX → TX which
sends TxX → Tf(x)X. Finally, if X is a measure space and µ is an invariant measure, then
we are studying ergodic theory . Ergodic theory will be one of the main themes of this course.

One can also study holomorphic dynamics , where T : C→ C is a holomorphic function.
One can “generalize” this to the study of rational functions from a variety to itself.

We now introduce Hamiltonian systems.

Definition 3.9. Let X be a smooth manifold and let ω be a nondegenerate 2-form such
that dω = 0. Then we say that (X,ω) is a symplectic manifold .

Definition 3.10. Let X be a symplectic manifold. For a function f : X → R, let Hf be the
vector field defined by the relation ω(·, Hf ) = df . Then we define the Hamiltonian dynamical
system on X by the ordinal differential equation

ρ̇(t) = Hf (ρ(t))

where ρ(0) is given.

In this case, the measure ωn/n! is an invariant measure of ω.

Example 3.11. Let X be the cotangent space of Rn and let ω =
∑

j dξj ∧dxj. Then (X,ω)
is a symplectic manifold and

Hf =
∑
j

∂f

∂ξj
∂xj −

∂f

∂xj
∂ξj .
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Example 3.12. We show that the irrational rotation is a Hamiltonian system. Let (R2, dx∧
dy) be our symplectic manifold, so

Hf =
∂f

∂x
∂y −

∂f

∂y
∂x.

Now let

f(x, y) =
x2 + y2 − 1

2

so ẋ = −∂yf and ẏ = ∂xf . Then S = ϕ−2πα.
The irrational rotation is an especially useful example because it is simultaneously a

topological, smooth, holomorphic, ergodic-theoretic and Hamiltonian system.

3.2 Properties of the irrational rotation

Let T be the irrational rotation. For every f : S1 → R, let

SNf(θ) =
1

N

N−1∑
j=0

f(T j(θ)).

Let

f =
1

2π

∫ 2π

0

f(ϕ) dϕ.

Theorem 3.13. One has
lim
N→∞

SNf = f,

pointwise if f ∈ C(S1) and in L2 if f ∈ L2(S1).

Proof. By the Stone-Weierstrass theorem, trigonometric polynomials are dense in C(S1) (in
the L∞ topology), so to prove pointwise convergence we just need to check on trigonometric
polynomials. It then suffices to check for the trigonometric basis f(θ) = ei`θ. If ` = 0 then
this is obvious. If ` 6= 0,

SNf(θ) =
1

N

N−1∑
j=0

ei`(θ+2πjα) =
ei`θ

N

1− ei`2πNα

1− ei`2πα
.

Since α is irrational, the denominator is never 0, hence is bounded from below. The numer-
ator is clearly bounded from above, so as N → ∞, SNf → 0 uniformly. Meanwhile, f = 0
since f is periodic of period 2π`. This proves the pointwise claim.

One can prove L2-convergence by taking the Fourier series

f =
∑
`

f`e
`
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where e`(θ) = ei`θ. Then f0 = f . We have 〈SN(e`), SN(ek)〉 = 0 whenever k 6= ` by
orthogonality. ∣∣∣∣∣

∣∣∣∣∣ 1

N
SN

(∑
`

f`e
`

)
− f0

∣∣∣∣∣
∣∣∣∣∣
2

L2

≤

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
|`|≤k

f`
N
SN(e`)

∣∣∣∣∣∣
∣∣∣∣∣∣
2

L2

+

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
|`|>k

f`
N
SN(e`)− f0

∣∣∣∣∣∣
∣∣∣∣∣∣
2

L2

and ∣∣∣∣∣∣
∣∣∣∣∣∣
∑
|`|>k

f`
N
SN(e`)

∣∣∣∣∣∣
∣∣∣∣∣∣
2

L2

=
∑
|`|>k

∣∣∣∣∣∣∣∣f`NSN(e`)

∣∣∣∣∣∣∣∣2
L2

≤
∑
|`|>k

|f`|2

and for any ε > 0 we may choose k so that the sum over |`| > k is at most ε. The sum over
|`| ≤ k can also be chosen less than ε by taking N big enough so we’re done.

Corollary 3.14. (2πnα)n∈N is dense in S1.

Proof. We have for every f ∈ C(S1),

1

N

N−1∑
n=0

f(2πnα) =
1

2π

∫ 2π

0

f(ϕ) dϕ.

Suppose the claim fails. Then there is a open U ⊆ S1 such that for every n ∈ N, nα /∈ U . Let
f be zero outside of U , such that

∫
f 6= 0. Then the left-hand side is 0 while the right-hand

side is nonzero.

Corollary 3.15. The only invariant Borel probability measure of the irrational rotation is
Lebesgue measure.

Proof. Suppose that µ is an invariant measure. Then∫
S1

f(x+ 2πnα) dµ(x) =

∫
S1

f(x) dµ(x)

but the 2πnα are dense, so in fact we have∫
S1

f(x+ y) dµ(x) =

∫
S1

f(x) dµ(x)

whence µ is rotation-invariance, hence the Lebesgue measure.

Definition 3.16. A dynamical system T with fixed σ-algebra Σ is uniquely ergodic if there
is a unique T -invariant probability measure on Σ.

So we have just proven that the irrational rotation is uniquely ergodic for the Borel
σ-algebra. This is a very unusual property.
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Corollary 3.17. Modulo null sets, there are no invariant proper subsets of the irrational
rotation.

Proof. Let A be an invariant set and let f = 1A, g = 1− f . Then

〈SNf, g〉 =

∫ 2π

0

SNf(θ)g(θ) dθ =

∫ 2π

0

f(θ)g(θ) dθ = 0

but also
〈f, g〉 = |A|(2π − |A|)

so by the equality we have |A|(2π − |A|) = 0.
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Chapter 4

Ergodic theory

4.1 The mean ergodic theorem

We now extend the above results on the irrational rotation to general dynamical systems.
Let (X,µ) be a probability space, and for a measurable function f and measure-preserving

transformation T , let

Snf(x) =
n−1∑
j=0

f(T j(x)).

be n times the the time average of f . For example if f is an indicator function for a set A
then Snf counts the number of times that we visit f . Let

f =

∫
X

f dµ

be the space average of f . So if f is an indicator function then f is the probability of A.
For the irrational rotation we proved that Sn/nf → f pointwise and in L2. This is a special
case of the ergodic theorems.

Lemma 4.1. If g ≥ 0 is an integrable function then∫
X

g ◦ T dµ =

∫
X

g dµ.

Proof. For indicator functions this is obvious. By taking sums we extend to simple functions
and then use monotone convergence.

Definition 4.2. Let Uf = f ◦ T , the Koopman operator of T .

By the lemma, U is an isometry on L2 and we have

Snf(x) =
n−1∑
j=0

U jf(x).
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Theorem 4.3. Let H be a Hilbert space and U ∈ B(H) is an operator such that ||U || ≤ 1.
Let

Inv = {f ∈ H : Uf = f}.

Let P : H → Inv be the orthogonal projection. Then for every f ∈ H,

∑
1

n

n−1∑
j=0

U jf → Pf

in L2.

The proof of this theorem uses the Banach-Alaoglu theorem and the following lemma:

Lemma 4.4. Ug = g iff U∗g = g.

Proof. Since the adjoint is an involution we just need to check one direction. Suppose
Ug = g. Then

0 = ||U∗g − g||2 = ||U∗g||2 + ||g||2 − 2 Re〈U∗g, g〉 = ||U∗g||2 − ||g||2 ≤ ||Ug||2 − ||g||2 = 0.

Proof of theorem. It suffices to prove the claim when f ∈ Inv⊥, in which case Pf = 0. We
expand

Snf =
n−1∑
j=0

U jf

as
||Snf/n||2 = 〈f, S∗nSnf/n2〉

and

||Snf/n|| ≤
1

n

n−1∑
j=0

||U jf || ≤ ||f ||

which is bounded. Now f ∈ Inv⊥ and gn = S∗nSnf/n
2 is a bounded sequence, so gn has a

weak limit. Suppose that g is a weak limit; we claim that g ∈ Inv, so 〈f, g〉 = 0. But

(1− U∗)(S∗n/n) =
1

n

n−1∑
j=0

(1− U∗)(U∗)j−1 =
1− (U∗)n

n

whose operator norm is bounded by 2/n, so

(1− U∗)gn → 0.

This implies that (1− U∗)g = 0, so by the lemma Ug = g and g ∈ Inv.
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Corollary 4.5 (von Neumann mean ergodic theorem). Let (X,µ, T ) be a measure-preserving
system and f ∈ L2(µ). Let Inv(T ) be the space of Koopman-invariant functions for µ and
let P : L2(µ)→ Inv(T ) be the orthogonal projection. Then

1

n

n−1∑
j=0

f(T j(x))→ Pf

in L2(µ).

Note that the mean ergodic theorem does not assume that µ is a probability measure.
However, when one applies the mean ergodic theorem he usually wants to assume that
indicator functions are in L2, which is only possible when µ is a finite measure.

Lemma 4.6. For every g ∈ Inv and f ∈ L2,∫
X

(Pf)g dµ =

∫
X

fg dµ.

Proof.
〈Pf, g〉 = 〈f, P ∗g〉 = 〈f, Pg〉 = 〈f, g〉.

Corollary 4.7. If A is an invariant set and µ(A) <∞ then for every f ∈ L2,∫
A

Pf =

∫
A

f.

Corollary 4.8. P is a positive-semidefinite operator.

Proof. Suppose f ≥ 0. Then Pf(x) is the average of the Koopman iterates f(T j(x)) ≥ 0.

Corollary 4.9. If µ is a probability measure then∫
X

Pf dµ =

∫
X

f dµ.

Corollary 4.10. If µ is a probability measure and f > 0 a.e. then Pf > 0 a.e.

Proof. Note that (Pf)−1(0) is invariant since Pf ∈ Inv, and has finite measure, so∫
(Pf)−1(0)

f =

∫
(Pf)−1(0)

Pf = 0.

Since f is nonnegative this implies that Pf = 0 implies f = 0.

Example 4.11. Applying the mean ergodic theorem to the irrational rotation we have

Pf = f.
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Example 4.12. Let Σ+
m be the Cantor space of infinite sequences in the alphabet {0, . . . ,m−

1}. Define the shift map
T (x1x2x3 · · · ) = x2x3x4 · · · .

The dynamical system (Σ+
m, T ) has many invariant measures. If y is a word in {0, . . . ,m−1},

let Cy denote the cylinder of all sequences which begin with y. A Borel measure is defined
uniquely (assuming it is well-defined at all) by assigning measures to each of the Cy. In fact
choose a probability vector p, i.e. p = (p0, . . . , pm−1) with pj ∈ [0, 1] such that

∑
j pj = 1,

and let
µp(Cy) =

∏
j

pyj .

Then µp is a Borel probability measure on Σ+
m, and

µp(T
−1(Cy)) = µp

(⋃
j

Cj·y

)
=
∑
j

µp(Cj·y) = µp(Cy).

Therefore µp is an invariant measure. As we will prove, this gives an ergodic system that is
not uniquely ergodic. In case p = (1/10, . . . , 1/10), and m = 10, this gives a construction of
Lebesgue measure, which can be used to prove that almost every number is normal.

We now prove a recurrence theorem of Caratheodory, which confusingly is not named
after Caratheodory.

Theorem 4.13 (Poincare recurrence). Suppose that (X,µ) is a probability space, T : X →
X measure-preserving, and B is measurable. Then for µ-a.e. x ∈ B, there are infinitely
many n ∈ N such that T nx ∈ B.

Proof. Let f = 1B. By the mean ergodic theorem,

1

n

n−1∑
j=0

f(T j(x))→L2 Pf(x) > 0

a.e. in B. By the Riesz-Weyl theorem, there is a subsequence (nk)k ∈ N such that

1

nk

nk−1∑
j=0

f(T j(x))→a.e. Pf(x).

The claimed property is true a.e. for the nk.

Example 4.14. Suppose we have two chambers connected, and a gas only in one chamber.
By the second law of thermodynamics, the gas will spread throughout the two chambers.
But by Poincare recurrence, the gas will almost surely return to the first chamber. However,
the recurrence time of such a phenomenon may exceed the lifespan of the universe.

There is also a combinatorial proof of Poincare recurrence.

Proof of Poincare recurrence. If there were only finitely many such n we would be able to
assume wlog that there were only zero such n, by time-translation. Then for every x ∈ B and
n ∈ N, T n(x) /∈ B. So if n 6= m, and x ∈ T−n(B)∩T−m(B), then T n−m(Tm(x)) = T n(x) ∈ B,
a contradiction. Therefore the T−n(B) are disjoint and have positive measure, yet there are
infinitely many of them and µ is a probability measure, a contradiction.
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4.2 Pointwise ergodic theorem

To introduce the pointwise ergodic theorem, we need to define conditional expectation.

Definition 4.15. Let (X,Σ, µ) be a probability space and J ⊆ Σ a σ-algebra. Given f a
Σ-measurable function, A ∈ Σ, let

µf (A) =

∫
A

f dµ.

Then define the conditional expectation

E(f |J) =
d(µf |J)

d(µ|J)
,

the Radon-Nikodym derivative of µf with respect to µ when restricted to the σ-algebra J .

Example 4.16. If J is the trivial σ-algebra then E(f |J) is the constant function given by
the mean E(f).

Example 4.17. Let (X,Σ, µ) be [0, 1] and J be the σ-algebra generated by [0, 1/2]. Then
E(f |J)(x) is the average of f on [0, 1/2] if x ≤ 1/2 or is the average of f on (1/2, 1] for
x > 1/2.

We actually have an equivalent definition of conditional expetation which uses the or-
thogonal projector from the mean ergodic theorem.

Lemma 4.18. Assume that P is a probability measure. Let P be the orthogonal projection
L2(µ)→ Inv T . Then ||P ||L1→L1 ≤ 1, so P extends uniquely to a projection L1(µ)→ Inv T .

Proof. Note that for any f ∈ L2(µ), {x ∈ X : Pf(x) ≥ 0} its complement are T -invariant
sets. So∫

X

|Pf | =
∫
Pf≥0

Pf −
∫
Pf<0

Pf =

∫
Pf≥0

f −
∫
Pf<0

f ≤
∫
Pf≥0

|f |+
∫
Pf<0

|f | = ||f ||L1(µ).

Since µ is a probability measure, L2(µ) is a dense subspace of L1(µ), whence the claim.

Corollary 4.19. Let J be the σ-algebra of T -invariant sets. Then for any f ∈ L1(µ),

E(f |J) = Pf.

Theorem 4.20 (Birkhoff pointwise ergodic theorem). Suppose that (X,Σ, µ) is a probability
space, T : X → X measure-preserving, and f ∈ L1(µ). Then for a.e. x ∈ X,

lim
n→∞

1

n

n−1∑
j=0

f(T j(x)) = E(f |J)(x)

where J is the σ-algebra of invariant sets,

J = {A ∈ Σ : T−1(A) = A}.
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Corollary 4.21. Let J, µ be as in the pointwise ergodic theorem, and P as in the mean
ergodic theorem. If f ∈ L2(µ) then E(f |J) = Pf .

Note that for any open set of reals U , E(f |J)−1(U) ∈ J iff E(f |J) ◦T = E(f |J). In fact,
for any invariant set A, ∫

A

E(f |J) dµ =

∫
A

f dµ.

Lemma 4.22. The limit in the pointwise ergodic theorem exists µ-a.e.

Proof. Let

f(x) = lim sup
n→∞

1

n

n−1∑
j=0

f(T j(x))

and similarly for f and lim inf. Clearly f ≥ f and it suffices to show that f = f , µ-a.e. In
fact it suffices to show that ∫

X

f dµ ≤
∫
X

f dµ ≤
∫
X

f dµ.

Replacing f with −f we see that in fact the seemingly weaker statement∫
X

f dµ ≤
∫
X

f dµ

is sufficient.
Fix M > 0, and let fM = min(f,M). Then fM ≤M .

Lemma 4.23. fM > −∞, µ-a.e.

Proof of sublemma. For any function g, g ≥ −|g|. So∫
X

fM dµ ≥
∫
X

lim sup
n→∞

1

n

n−1∑
j=0

−|f ◦ T j| dµ.

By Fatou’s lemma,∫
X

fM dµ ≥ lim sup
n→∞

1

n

∫
X

n−1∑
j=0

−|f ◦ T j| dµ = −
∫
X

|f | dµ > −∞

since T is measure-preserving.

Fix ε > 0. If f(x) <∞ then there is an n such that

1

n

n−1∑
j=0

f(T j(x)) ≥ f(x)− ε.
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Let n(x) be the smallest such n witnessing this. If f(x) =∞ then there is a n such that

1

n

n−1∑
j=0

f(T j(x)) ≥M

so we may let n(x) be the smallest such witness. Then

fM(x) ≤ 1

n(x)

n−1∑
j=0

f(T j(x)) + ε.

For each R > 0, let
AR = {x ∈ X : n(x) > R}.

Then the AR form a chain: if R′ > R then AR′ ⊆ AR. Moreover,
⋂
RAR = ∅ and µ is

a probability measure, so µ(AR) → 0 as R → ∞. Since µ is a probability measure, the
constants are in L1(µ) so

lim
R→∞

∫
AR

(|f |+M) dµ = 0.

Fix R > 1. Let ni(x) be defined inductively. Let n0(x) = 0. If T ni(x)(x) /∈ AR, let

ni+1(x) = ni(x) + n(T ni(x)(x)).

Otherwise, T ni(x)(x) ∈ AR and let ni+1(x) = ni(x) + 1, and we have

1 ≤ ni+1 − ni ≤ R.

Suppose T ni(x)(x) /∈ AR. Then

n(T ni(x)(x))fM(T ni(x)(x)) ≤
n(Tni(x)(x))∑

j=0

f(T k+ni(x))(x) + n(T ni(x)(x))ε.

Clearly the constants are invariant functions and f is invariant under T . So

(ni+1 − ni)(x)fM(x) ≤
ni(x)+1∑
j=ni(x)

f(T j(x)) + (ni+1 − ni)(x)ε.

On the other hand, if T ni(x)(x) ∈ AR, then we use the estimate fM(x) ≤M and ni+1(x)−
n(x) = 1 to see that

(ni+1 − ni)(x)fM(x) ≤M.

Let
f̃M = f + (|f |+M)1AR .

Then in both cases,

(ni+1 − ni)(x)fM(x) ≤
ni+1(x)∑
j=ni(x)

f̃M(T j(x)) + (ni+1 − ni)(x)ε.
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Fix some large N ; then for any x there is k such that nk(x) ≤ N ≤ nk+1(x). Then the
series in question telescope and

NfM(x) ≤
nk(x)−1∑
j=0

f̃M(T j(x)) + (N − nk(x))fM(x) + nk(x)ε

≤
N−1∑
j=0

f̃M(T j(x))−
N−1∑

j=nk(x)

f̃M(T j(x)) +RM +Nε

≤
N−1∑
j=0

f̃M(T j(x))−
N−1∑

j=N−R

|f(T j(x))|+RM +Nε

since −|f | ≤ |f̃ |. Dividing both sides by N ,

fM(x) ≤ 1

N

N−1∑
j=0

f̃M(T j(x)) +
1

N

N∑
j=N−R

|f(T j(x))|+ ε+
RM

N
.

We integrate both sides dµ(x). Then since µ(AR) ≤ µ(X) = 1,∫
X

fM dµ ≤
∫
X

f̃M +
R

N

∫
X

|f |+ ε+
RM

N
dµ

≤
∫
X

f dµ+

∫
AR

(|f |+M) dµ+
R

N
||f ||L1(µ) + ε+

RM

N
.

Taking N →∞, we have∫
X

fM dµ ≤
∫
X

f dµ+

∫
AR

(|f |+M) dµ+ ε.

Taking R→∞ and ε→ 0, ∫
X

fM dµ ≤
∫
X

f dµ.

Let gM = fM − f 0. Since the fM are an increasing sequence, gM ≥ 0 and the gM form an
increasing sequence. Moreover, we already proved that∫

X

f 0 dµ > −∞.

Since f 0 ≤ 0, f 0 ∈ L1(µ). So the monotone convergence theorem implies that gM → f − f 0

in L1(µ). This implies that ∫
X

f − f 0 ≤
∫
X

f − f 0 dµ

as desired.

We are finally ready to prove the pointwise ergodic theorem.
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Proof of pointwise ergodic theorem. It remains to show that the limit is E(f |J). This follows
from the mean ergodic theorem if f ∈ L2(µ), since then E(f |J) = Pf . Otherwise, f /∈ L2(µ)
but there is a g ∈ L2(µ) such that Sng/n → Pg a.e. and ||f − g|| < ε. Moreover, we can
find an n such that

||Snf/n− Pf ||1 ≤ ||Sn(f − g)/n||1 + ||Sng/n− Pg||1 + ||Pf − Pg||1
≤ ||f − g||1 + ||Sng/n− Pg||2 ≤ ||f − g||1 < 3ε.

Therefore Snf/n→ Pf = E(f |J).

Example 4.24. We apply the pointwise ergodic theorem to the shift map. Fix a probability
vector p. As a black box, we will assume that the shift map is ergodic; i.e. if A ⊆ Σ+

m is
a Borel set and T−1(A) = A then µp(A)(1 − µp(A)) = 0. Let ` be a letter and f = 1C`
the indicator function of its cylinder. Then the Birkhoff ergodic average for n iterates on a
sequence x is 1/n times the number of j such that xj = `, for j ≤ n, since

T j(x) = xj+1xj+2 · · · .

By the pointwise ergodic theorem, the Birkhoff average converges to p`, µp-a.e. As a corollary,
we have proven the law of large numbers .

4.3 Ergodic systems

Definition 4.25. Let (X,Σ, µ) be a measure space and T : X → X a µ-invariant transfor-
mation. We say that T is an ergodic transformation for µ, or that µ is an ergodic measure
for T , if for every A ∈ Inv T , µ(A) = 0 or µ(Ac) = 0.

Definition 4.26. Let (X,Σ, µ, T, d) be an ergodic system equipped with a metric d and
assume that Σ is the Borel σ-algebra for d. We say that T is uniquely ergodic if the choice
of µ is unique on Σ.

We have already proven that the irrational rotation is uniquely ergodic, and since we
have multiple choices of probability vector, the shift is not uniquely ergodic but is ergodic.

Example 4.27. We consider the multiplication map by m on the circle, namely, T : S1 → S1

has T (x) = mx mod 1 for some m > 0. Then T is ergodic for Lebesgue measure µ, in a
particularly strong form, namely that

lim
n→∞

µ(A ∩ T−n(B)) = µ(A)µ(B).

If we put B = Ac this obviously implies that µ is a T -ergodic measure. To prove this claim
we use this lemma.

Lemma 4.28. Let T be the multiplication map, f, g ∈ L2(µ). Then∫ 1

0

f ◦ T n(x)g(x) dx =

∫ 1

0

f

∫ 1

0

g.

48



Proof. It suffices to check on an orthonormal basis of L2(µ), namely e`(x) = e2πix`. Then∫ 1

0

e` ◦ T n(x)ek(x) dx =

∫ 1

0

e2πi(`mn+k)x dx.

As n → ∞ and either ` 6= 0 or k 6= 0 then this integral goes to 0. Otherwise, if ` = k = 0,
the integral is 1. This proves the lemma on an orthonormal basis.

The multiplication map has many invariant measures. In fact, T has many periodic points
and fixed points. The fixed points are intersections of the graph of T with the identity map,
of which there are a positive but finite set, which grows as m → ∞. Replacing T with T n

replaces m with mn which clearly → ∞ as n does. Fixed points of T n are periodic points,
so the periodic points are dense.

Example 4.29. We show that the shift map on Σ+
m are ergodic. We identify x ∈ Σ+

m

with the number x ∈ [0, 1] of which x is a m-ary expansion. The map π(x) = x is not
injective because m-ary expansions are not unique. If we let p = (1/m, . . . , 1/m) then π∗µp
is Lebesgue measure and T is conjugate up to a null set to the multiplication map by m. If
m = 3 and p = (1/2, 0, 1/2) then π∗µp is supported on the standard null Cantor set, which
is its Hausdorff measure (the Cantor-Lebesgue measure).

For any cylinder Cy generated by the word y,

µp(T
−1(Cy)) = µp

m−1⋃
`=0

c`·y =
m−1∑
`=0

µp(C`·y) =
m−1∑
`=0

p`py = µp(Cy).

So µp is T -invariant. Moreover, if N > ` > 1 then

µp(T
−N(Cy ∩ Cz)) = µp

⋃
|x|=N

Cx·y ∩ Cz = µp
⋃

|x|=N−`

Cz·x·y = µp(Cz)µp(Cy)

where |x| denotes the length of the word x. This proves that µp is an ergodic measure,
and since p is very far from unique, we have lots of ergodic measures for T . Thus π∗µp is
an ergodic measure for the multiplication map. In fact these measures are often mutually
singular:

Lemma 4.30. Let p, p′ be probability vectors. Then µp ⊥ µp′ .

Proof. We prove this in the case m = 2. Let p = (P, 1 − P ) and p′ = (P ′, 1 − P ′). For any
P , let

FP = {x ∈ Σ+
m : lim

n→∞

card{xi = 0 : i ≤ n}
n

= P}.

Then if P 6= P ′, FP ∩ FP ′ is empty. Let f(x) = 1 if x1 = 0 and f(x) = 0 otherwise. Then
the ergodic theorem implies that

card{xi : i ≤ n}
n

=
Snf(x)

n
→
∫
f = P,

µp-a.e. Therefore µp(FP ) = µp(Σ
+
m) = 1. So µp(FP ′) = 0 whence µp ⊥ µp′ .

This is very shocking because in the weakstar topology, µp can be approximated arbi-
trarily well by the µp′ as p′ → p.
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4.4 Properties of ergodic transformations

Theorem 4.31. For (X,µ) a measure space, T : X → X is ergodic iff for every measurable
f : X → R, f ◦ T = f a.e. implies that f is constant a.e.

Proof. Let c1 be the supremum of all t such that µ(f−1((−∞, t))) = 0 and c2 the infimum
of all t such that µ(f−1([t,∞])) = 0. Then the union of these two preimages is X so c1 = c2,
and f = c1 a.e.

We now restrict to the case that X is a compact metric space.

Definition 4.32. Let X be a compact metric space. Let M(X) denote the set of all Borel
probability measures on X. If T : X → X is continuous, let M(X,T ) be the set of all T -
invariant Borel probability measures andMe(X,T ) the set of ergodic measures inM(X,T ).

Example 4.33. Ergodic transformations are not dense in a typical topology for mappings
X → X. In fact, if it was, then a slight perturbation of the solar system would make the
orbit of the earth dense in the solar system, which would be quite bad.

Theorem 4.34 (Krylov-Bogolibabov). The set M(X,T ) is nonempty.

That is, every transformation has an invariant measure. In fact, this measure can be
taken to be a Radon measure.

Proof. Let Snf(x) =
∑n−1

j=0 f(T j(x)) be the ergodic average of f , as usual. Since X is
compact, C(X) is separable and we may choose (ϕm)m to witness this. Fix (x,m) and
consider Sn(ϕm(x))/m. This sequence is bounded in R, so has a congergent subsequence,
and by Cantor’s diagonal argument we may choose the subsequence to converge for every
m, say to J(ϕm). Then |J(ϕm)| ≤ ||ϕm||∞, and J is a positive functional, so J extends to a
Radon probability measure µ on X. Moreover,

Snk
nk

ϕm(T (x)) =
Snk
nk

ϕm(x) +
ϕm(T nk)(x)− ϕm(x)

nk

which as the subsequence nk →∞ converges to

J(ϕm ◦ T ) = J(ϕm) + 0

whence µ is T -invariant.

It is easy to see that M(X,T ) is weakstar closed, and that it is convex. Since M(X) is
bounded, the Banach-Alaoglu theorem implies thatM(X,T ) is actually weakstar compact.

Theorem 4.35. The set Me(X,T ) is the set of extreme points of M(X,T ).

Proof. Assume µ is not ergodic. Then there is an invariant set A such that 0 < µ(A) < 1.
Let µ|B denote the restriction of µ to the measurable set B. We have

µ = µ(A)
µ|A
µ(A)

+ µ(Ac)
µ|Ac

µ(Ac)
.
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Then µ|A/µ(A) and µ|Ac/µ(Ac) are invariant Borel probability measures, so µ is not an
extreme point.

Now suppose µ is ergodic and suppose µ = tµ1 + (1 − t)µ2 and 0 < t < 1, where µ1, µ2

are invariant measures. We claim µ1 = µ2, which implies that µ is an extreme point. In fact,
µ1, µ2 are absolutely µ-continuous. Let ρ1 ∈ L1(µ) be the Radon-Nikodym derivative of µ1

with respect to µ. Then ρ1 ≥ 0. Let F = {x ∈ X : ρ1(x) < 1}. Then µ(T−1F ) = µ(F ) and
some set-theoretic computations prove

µ(F \ T−1F ) = µ(T−1F \ F ).

Suppose µ(F \ T−1F ) is nonzero. Then

µ(F \ T−1F ) >

∫
F\T−1F

ρ1 dµ =

∫
T−1F\F

ρ1 dµ ≥ µ(T−1F \ F )

which is a contradiction. Therefore µ(F \ T−1F ) = 0, so F is almost T -invariant.
Since µ is ergodic, either µ(F ) = 0 or µ(F ) = 1. If µ(F ) = 1 then

1 = µ1(X) =

∫
F

ρ1 dµ < µ(F ) = 1

which is a contradiction. Therefore F is µ-null. Something similar happens on the set of x
such that ρ1(x) > 1. Therefore ρ1 = 1 in L1(µ). So µ = µ1.

Corollary 4.36. Every transformation has an ergodic measure.

Proof. Use the Krein-Milman theorem.

Corollary 4.37. If µ, ν ∈Me(X,T ) then either µ = ν or µ ⊥ ν.

Proof. By the Radon-Nikodym-Lebesgue decomposition, we can write

µ = tν1 + (1− t)ν2

where ν1, ν2 ∈M(X,T ), ν1 is ν-a.c. and ν2 ⊥ ν. It follows that t = 0.

4.5 Mixing transformations

Definition 4.38. Let (X,µ) be a probability space. We say T : X → X is mixing if for
every measurable sets A,B,

lim
n→∞

µ(A ∩ T−nB) = µ(A)µ(B).

Lemma 4.39. A mixing transformation is ergodic.

Proof. For any invariant set A,

0 = lim
n→∞

µ(A ∩ T−n(Ac)) = µ(A)µ(Ac)

so µ(A) = 0 or µ(Ac) = 0.
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Example 4.40. Let X = {0, 1} and µ({0}) = µ({1}) = 1/2. Let T be the only nontrivial
bijection X → X. Then the invariant sets are X, ∅ so (X,µ, T ) is ergodic. But then

µ(T−n({0}) ∩ {0})

oscillates between 1/2 and 0 so the system is not mixing. Here the problem is periodicity.

Lemma 4.41. A system (X,µ, T ) is mixing iff there is a D ⊂ L2(µ) such that the span of
D is dense in L2(µ) and for every f, g ∈ D,

lim
n→∞

∫
X

f(T n(x))g(x) dµ(x) =

∫
X

f dµ

∫
X

g dµ.

Proof. The set of all indicator functions is an example of such a D.

In other words, any two random variables become “approximately independent” as time
goes on.

Example 4.42. The multiplication map is mixing; here D is the standard basis of the
trigonometric polynomials.

Example 4.43. The irrational rotation is not mixing. Again this can be checked on the
standard basis of trigonometric polynomials. This is because the irrational rotation is ap-
proximable arbitrarily well by rational rotations, which are periodic.

Let M ∈ GL(n,Z). Since M extends to an element of GL(n,R) which preserves Zn, M
drops to an automorphism of the torus Tn. Moreover, Lebesgue measure drops to a measure
on Tn, so Tn is a probability space.

Theorem 4.44. Let M ∈ GL(n,Z) viewed as an automorphism of Tn. If detM 6= 0 then
M is measure-preserving. Moreover, if SpecM does not contain any roots of unity, then M
is mixing.

Proof. We note that M is measure-preserving if and only if for every f ∈ L2(Tn),∫
Tn
f ◦M =

∫
Tn
f

and in fact it suffices to check this on a dense subset D of L2(Tn). In fact we let D = {e` :
` ∈ Zn} where

e`(x) = e2πi〈`,x〉.

Then D is dense in L2(Tn) because every function in L2(Tn) has a multivariate Fourier series.
Moreover, ∫

Tn
e` ◦M =

∫
Tn
e2πi〈Mx,`〉 dx =

∫
Tn
e2πi〈x,Mt`〉 dx.

Since detM t 6= 0, M t` 6= 0 if ` 6= 0 and M t0 = 0. But then∫
Tn
e2πi〈x,Mt`〉 dx =

∫
Tn
e`.
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For mixing, note that ∫
Tn
e` ◦MNek =

∫
Tn
e2πi〈x,(MN )t`−k dx.

In fact the integral is zero unless (MN)t`− k = 0, in which case the integral is 1. If ` 6= 0 or
k 6= 0 then the integral is 0 unless (MN)t` = k. Therefore the limit is nonzero if there are
N1 < N2 such that (MN1)t` = (MN2)t` = k. Solving for k this happens iff (MN2−N1)t` = `.
But this means that there is an eigenvalue λ such that λN2−N1 = 1, which contradicts our
hypothesis.

Example 4.45. Suppose M =

[
2 1
1 1

]
. Then detM = 1 and M sends T2 to itself, in fact is

mixing and invertible. In particular M is ergodic for Lebesgue measure.
We show that M is not uniquely ergodic by looking for periodic points, i.e. x such that

there exists n with Mnx = x. For n = 1, 0 is periodic (i.e. a fixed point). In fact it is
the unique fixed point. Thus we let ν be the point mass centered at 0. Clearly ν is a Borel
measure which is invariant, and in fact ergodic.

Stronger, periodic points are dense in T2, namely rational points are periodic. We count
the number of points of period n. Let Fix(n) = {x ∈ T2 : Mnx = x}. Viewing [0, 1)2 as the
fundamental domain of T2 we have

Fix(n) = {x ∈ [0, 1)2 : (Mn − 1)x ∈ Z2}.

We compute the integer points in the parallogram (Mn−1)[0, 1)2 using Pick’s theorem. This
is the area of (Mn − 1)[0, 1)2, i.e.

det(Mn − 1) = (λn − 1)(λ−n − 1) = λn + λ−n − 2

where λ is the largest eigenvalue of M (so λ−1 is its smallest eigenvalue.) Thus

card Fix(n) = λn + λ−n − 2.

In particular, M is far from uniquely ergodic.
We now introduce the Artin-Mazur zeta function defined by

ζ(z) = exp

(
∞∑
n=1

zn card Fix(n)

n

)
.

For any C∞ diffeomorphism of a compact manifold this zeta function has a positive radius
of convergence. We check this for M . In fact

ζ(z) = exp

(
∞∑
n=1

(λn + λ−n − 2)zn

n

)
= exp

(
∞∑
n=1

(λz)n

n
+

(λ−1z)n

n
− 2zn

n

)
and since

log(1− z) = −
∞∑
n=1

zn

n
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it follows that

ζ(z) =
(1− z)2

(1− λz)(1− λ−1z)
.

This is a rational function whose smallest pole is −λ−1. This is related to the fact that the
rate of growth of Fix(n) is asymptotically λn.

Theorem 4.46. Suppose that M =

[
2 1
1 1

]
, viewed as an automorphism of T2. Then there

is a ε > 0 such that for every g = M + δg, where δg : T2 → T2 satisfies ||δg||C1 < ε, there is
a homeomorphism h : T2 → T2 such that h ◦ g = M ◦ h.

To prove this we need to use Neumann series ; namely, if ||A|| < 1 is a linear operator
then

(1− A)−1 =
∞∑
k=0

Ak.

Proof. We construct h to be of the form h = id +δh where ||δh||C1 is small. If this is to hold
then

(id +δh) ◦ (M + δg) = M ◦ (id +δh)

which simplifies to
M−1 ◦ (id +δh) ◦ (M + δg) = id +δh

i.e.
M−1 ◦ δg +M−1 ◦ δh ◦ h = δh.

Thus δh is a fixed point of the mapping

f 7→M−1 ◦ δg +M−1 ◦ f ◦ g.

Unfortunately we cannot use the contraction fixed point theorem because M−1 is not con-
tracting (since λ > 1).

Let {e+, e−} be the normalized eigenbasis of M . Decompose δh as

δh = h+e+ + h−e−

and similarly for δg. Then the fixed-point equation is

λ−1g+ + λ−1h+ ◦ g = h+,

λg− + λh− ◦ g = h−.

Let X = C(T2 → R). Let F+f = λ−1g+ + λ−1fg and F−f = −g− ◦ g−1 + λ−1f ◦ g−1.
Then F+, F− send X to itself. Since ||M − g||C1 = ||δg||C1 is small and M is invertible, g is
invertible by the inverse function theorem.

Then F+, F− are contractions in L∞, so by the contraction fixed point theorem, there are
h± which are fixed points of F±. So

h = id +h+e+ + h−e−
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is the desired function. But h may not be a homeomorphism. To fix this, we construct
h̃ = id +δh̃ such that δh̃ is periodic and ||δh̃||C1 is small such that g ◦ h̃ = h̃ ◦M . Then
h−1 = h̃.

Note that the fixed point f of the contraction fixed-point theorem in a Banach space is
given by the telescoping sum

f = f0 +
∞∑
n=0

fn+1 − fn

where f0 is the initial datum of the iteration and fn+1 = Ffn, F the given contraction. We
assume that f0 = 0 and θ is the constant of contraction for F , then

||f || ≤
∞∑
n=0

||fn+1 − fn|| ≤
θ

1− θ
||f1||.

In this case,

||h+||L∞ ≤
1

λ− 1
||g+||L∞

and

||h−||L∞ ≤
1

1− λ−1
||g−||L∞ .

Now h̃ has the required properties iff

δh̃ ◦M −M − δh̃ = δg ◦ (id +δh̃).

So we define a linear operator L by

Lf = f ◦M −M ◦ f.

We now write δh̃ in the eigenbasis {e−, e+}, so

L(h̃−e− + h̃+e+) = e−h̃− ◦M + e+h̃+ ◦M − h̃−λ−1e− − h̃+λe+.

The equation decouples so we have

L±h̃± = h̃± ◦M − λ±1h̃±.

We invert the operators L± using a Neumann series. In fact,

L−h̃− = (h̃− − λ−1h̃− ◦M−1) ◦M

Therefore

L1
−H =

∞∑
n=0

λ−nH ◦M−n−1.

One can then show

L−1
+ H = −

∞∑
n=0

λ−1−nH ◦Mn.
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Then
L−1(H+e+ +H−e−) = L−1

+ H+e+ + L−1
− H−e−.

So it suffices to construct δh̃ such that

δh̃ = L−1(δg ◦ (id +δh̃)).

Let G(f) = L−1(δg ◦ (id +f)). We must show G is a contraction. In fact,

||G(f1 − f2)||C0 ≤ ||L−1||C0→C0||δg||C1||f1 − f2||C0 < ε||L−1||C0→C0||f1 − f2||C0 .

So if ||L−1||C0→C0 > 1/ε it follows that G is a contraction of C0.
Therefore h̃ exists so

h ◦ g ◦ h̃ = h̃ ◦M
whence M commutes with h ◦ h̃ = id +f for some periodic function f . In particular f
commutes with M , and writing f in the eigenbasis,

λf+e+ + λ−1f−e− = (f+ ◦M)e+ + (f− ◦M)e−.

Decoupling again,
f± = λ−nf±M

±n

and iterating f± sends it to 0, so f± = 0.

We consider when the above stability properties generalize. Let S ∈ C∞(T2 → T2) be a
diffeomorphism and consider the mapping of the tangent space

dS(x) : TxT2 → TS(x)T2.

Suppose that each tangent space splits

TxT2 = E+(x)⊕ E−(x)

where dS(x) sends E±(x) to E±(S(x)) and x 7→ E±(x) is a continuous mapping into the
Grassmannian. In the above proof we used the existence of a θ ∈ (0, 1) such that

||dT n(x)v|| ≤ Cθ|n|||v||

where || · || is the norm on TxT2 induced by the Riemannian metric of T2 and if v ∈ E−(x)
then the inequality ranges over n ≥ 0, if v ∈ E+(x) then n ≤ 0. Such a diffeomorphism is
called an Anosov diffeomorphism. Very few compact Riemannian manifolds admit Anosov
diffeomorphisms, and they have quite remarkable properties. For example, if S is Anosov and
measure-preserving then S is mixing, but it is not even known if an Anosov diffeomorphism
is necessarily measure-preserving.

More concretely, let T : T2 → T2 be the action of a matrix M ∈ SL(2,Z). Suppose M
has eigenvalues λ±1 and m = λ + λ−1 is the trace of M , so m ∈ Z. If m2 > 4 then we say
that M is a hyperbolic matrix and in this case T acts just like the cat map, and in fact is
mixing. If m2 = 4 then M is said to be a parabolic matrix , is conjugate to a shear matrix,
and T is known as a Dehn twist . If m2 < 4 then m = 0 (in which case λ = ±i) or m2 = 1
(in which case λ = ±eiπ/3). Either way the matrix is idempotent and hence is a rational
rotation. We say that M is an elliptic matrix , and note that T is not ergodic.
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4.6 The Hopf argument

We introduce a technique to show that certain transformations of Riemannian manifolds are
ergodic.

Definition 4.47. Let X be a metric space and T : X → X be continuous. The stable
manifold of x ∈ X is the set W s(x) of y ∈ X such that

lim
n→∞

d(T n(x), T n(y)) = 0.

If T is a homeomorphism then we also define the unstable manifold W u(x) to be the stable
manifold for T−1.

That is, W s(x) is the set of y such that forward orbits of x and y approach each other.

Example 4.48. Suppose T is the cat acting on T2. (Henceforth we consider the action of any
hyperbolic matrix to be a cat map, since by a number-theoretic argument the eigenvalues of
a hyperbolic matrix cannot be rational.) Then W s(x) = x+ e−R. Since e− is not a rational
point, e−R is dense in T2 for the same reason that orbits of the irrational rotation are dense.
So W s(x) is dense in T2, as is W u(x) = x+ e+R.

Theorem 4.49 (Banach-Saks). Let H be a Hilbert space and suppose that fn → f in the
weakstar topology of H. Then there is a subsequence (fnk)k such that the averages

lim
N→∞

1

N

N∑
k=1

fnk = f

in the norm of H.

Proof. Replacing fn with fn−f we may assume that f = 0. We will choose the subsequence
so ∑

i<j

|〈fni , fnj〉| ≤ 2.

This is proven by induction. Let n1 = 1, and suppose we have chosen n1, . . . , nk so that
whenever i < j ≤ k,

|〈fni , fnj〉| < 2−j.

To choose nk+1, we use the fact that for every fixed i ≤ k,

lim
n→∞
〈fni , fn〉 = 0

by definition of the weakstar topology. Therefore there is a nk+1 such that

|〈fni , fnk+1
〉| < 1

2k+1
.

This completes the induction, and∑
i<j

|〈fni , fnj〉| ≤
∞∑
j=1

j2−j ≤ 2.

57



Thus ∣∣∣∣∣
∣∣∣∣∣ 1n

n∑
k=1

fnk

∣∣∣∣∣
∣∣∣∣∣
2

≤ 1

n2

n∑
k=0

||fnk ||2

=
2

n2

∑
1≤i<j≤n

|〈fni , fnj〉|

≤ 1

n
sup
n
||fn||2 +

4

n2
= O(n−1)

since the fn → 0 weakly and hence are bounded.

Definition 4.50. Let (X, d, µ) be a metric Borel probability space, T : X → X measurable.
A function f : X → C is W s-invariant if there is a X0 such that µ(X0) = 1 and for every
x, y ∈ X0, such that y ∈ W s(x), f(x) = f(y).

Theorem 4.51. Let (X, d, µ) be a metric Radon probability space and f ∈ L2(µ). If
T : X → X is continuous then every weakstar accumulation point of {f ◦ T n}n is W s-
invariant. If T is also invertible then every weakstar accumulation point is W u-invariant.

We use the fact that µ is a Radon probability measure to apply the below lemma.

Lemma 4.52. If µ is a Radon probability measure then the Lipschitz functions are dense
in L2(µ).

Proof. We need only to show that the indicator functions can be approximated by Lipschitz
functions (here we are using that µ is a probability measure). If A is measurable then there
is an open set U such that A ⊆ U , µ(U \ A) < ε, and in particular

||1A − 1U || <
√
ε.

Therefore we only need to approximate 1U by Lipschitz functions. Let

uk(x) = min(1, kd(x,X \ U)).

Then the uk are Lipschitz and tend to 1U as k →∞.

Proof of Theorem 4.51. Suppose g is a weakstar accumulation point of {f ◦ T n}n; passing
to a subsequence we may assume that limn f ◦ T n = g in the weakstar topology.

If f is Lipschitz (and M its Lipschitz seminorm) then by applying the Banach-Saks
theorem and passing to a subsequence we may assume that

lim
n→∞

Ψn(x) = lim
n→∞

n∑
k=1

f ◦ T n = g

in the norm topology, where Ψn is the avergae of the first n terms. By the Riesz-Fisher
theorem and passing to a subsequence again, we may assume that Ψn → g a.e. Since f is
Lipschitz,

|Ψ`(x)−Ψ`(y)| ≤ 1

`

∑̀
k=1

|f ◦ T k(x)− f ◦ T k(y)| ≤ M

`

∑̀
k=1

d(T k(x), T k(y)) < ε
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if ` is large and y ∈ W s(x). But ||g(x) − g(y)| − |Ψ`(x) − Ψ`(y)|| < ε if ` is large so g is
W s-invariant.

By Lemma 4.52, if f ∈ L2(µ), we can find a Lipschitz function f ′ such that ||f − f ′|| < ε
and then ||f ′◦T n||L2 < ||f ||L2 +ε whence we can pass to a subsequence and assume f ′◦T n →
g′ for some g′. Then

||g − g′|| ≤ lim inf
n→∞

||(f − f ′) ◦ T n||L2 ≤ ||f − f ′|| < ε.

Taking ε = 1/k we let g′k be the given g′. Then g′k → g in L2 and by the Riesz-Fischer
theorem again we may again pass to a subsequence and assume g′k → g a.e., which implies
that g is W s-invariant.

Now let I be the space of functions in L2(µ) which are W u-invariant. Then I is L2-closed,
since any sequence in I has an a.e. convergent subsequence by the Riesz-Fischer theorem,
and the limit of such a subsequence is W u-invariant. In addition the Koopman operator of
T preserves I.

We will prove that if f ∈ I⊥ then f ◦ T n → 0 in the weakstar topology. Applying the
above argument to T−1 that if f ◦T−n → g0 in the weakstar topology then g0 is W u-invariant.
Suppose f ◦ T nk → g in the weakstar topology. Since T is measure-preserving we have∫

X

(f ◦ T )g dµ =

∫
X

f(T (x))g(T (T−1(x))) dµ(x) =

∫
f(x)g(T−1(x)) dµ(x)

whence T ∗ = T−1. Therefore

〈g, g〉 = lim
n→∞
〈f ◦ T n, g〉 = lim

n→∞
〈f, g ◦ T−n〉 = 〈f, g0〉 = 0

since g0 ∈ I and f ∈ I⊥.
So if f is just any function in L2(µ), write f = f1 + f2 where f1 ∈ I and f2 ∈ I⊥. If

f ◦ T n → g in the weakstar topology then we want to show that g is W u-invariant. Now
f 2 ◦ T n → 0 weakly, so we just need to check this for f1. Since f1 ∈ I it follows that
f1 ◦ T n ∈ I and so g ∈ I.

Note that we have proven something stronger. If f is Lipschitz, then we do not need to
assume that µ is a probability measure. However, the Hopf argument for ergodicity requires
that f be an arbitrary L2 function, since we must consider simple functions (which are far
from Lipschitz) so this technique for proving that T is ergodic does not work in infinite
measure.

Theorem 4.53 (Hopf argument). Let (X, d, µ) be a metric Radon probability space and
f ∈ L2(µ). If f = f ◦ T then f is W s-invariant.

Proof. Every weak accumulation point of {f◦T n}n is just f , which is hence W s-invariant.

Now suppose T is invertible and f = f ◦T . Then f is W s-invariant and also W u-invariant.
Modulo measure zero, we expect that f is simply constant, since we can propagate any value
of f along the stable and unstable manifolds of T . Since f was arbitrary it should follow
that T is ergodic. However, this argument does not work in general; if X is a Riemannian
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manifold, for example, we need to show that the stable and unstable manifolds form a
coordinate system for X, and that Lebesgue measure disintegrates into a tensor product of
measures on the stable and unstable manifolds.

As an example we prove the following theorem again.

Definition 4.54. A hyperbolic matrix is a matrix M such that SpecM does not meet the
unit circle.

Theorem 4.55. Let M ∈ SL(n,Z) be a hyperbolic matrix and T the action of M on Tn.
Then T is mixing.

We already proved this already using Fourier analysis. But we can also prove this using
the Hopf argument, a version of the Jordan canonical form, and a Fubini disintegration
lemma.

Lemma 4.56. For every M ∈ Cn×n there are projections Pj : Cn → Cn, eigenvalues λj ∈ C,
and nilpotent matrices Nj, such that PiPj = δjiPj, MPj = PjM ,

∑
j Pj = 1, and

M =
J∑
j=1

(λj +Nj)Pj.

To prove this form of the Jordan form we note that we can write the resolvent as

(M − λ)−1 =
M̃(λ)

det(M − λ)
,

so (M − λ−1) is a rational function which has poles at zeroes of det(M − λ). This uses the
fact that λ is a zero of det(M −λ) iff λ is an eigenvalue. Each pole is surrounded by a small
disc Dj containing no other poles, and we let

Pj =
1

2πi

∫
∂Dj

(λ−M)−1 dλ.

This decomposes M into generalized eigenspaces using residue calculus.
As a consequence of this Jordan form, we note that if nj is the least power such that

N
nj=0
j and L > nj for all j, then

ML =
J∑
j=1

λLj + LλL1
j Nj + · · ·+

(
L

nj − 1

)
λ
L−nj+1
j N

nj−1
j Pj

so, if M is a hyperbolic matrix, we let

Ps =
∑
|λj |<1

Pj

and Pu = 1− Ps, and then PuM
−L → 0 and PsM

L → 0 as L→∞.
If M is real, then every eigenvalue of M is either real or has a complex conjugate which

is also an eigenvalue. In particular, PuCn and PsCn admit real bases, and so restrict to
subspaces of Rn, say Eu and Es.
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Lemma 4.57. Let (W,λ) and (Y, ν) be probability spaces. If g ∈ L2(λ⊗ ν) and there is a
Z ⊂ W × Y such that λ⊗ ν(Z) = 1, and there are measurable functions ϕW : W → R and
ϕY : Y → R such that for every (w, y) ∈ Z, g(w, y) = ϕ1(w) and g(w, y) = ϕ2(y), then g is
constant a.e.

Proof. By Fubini’s theorem,

1 = (λ⊗ ν)(Z) =

∫
W

∫
Y

1Z(w, y) dν(y) dλ(w).

Therefore there is a w0 ∈ W and Y0 ⊆ Y such that ν(Y0) = 1 and {w0} × Y0 ⊆ Z. Suppose
(w, y) ∈ Z ∩ (W × Y0), which is true for almost every (w, y) ∈ W × Y . Since (w0, y) ∈ Z it
follows that

ϕ1(w0) = g(w0, y) = ϕ2(y) = g(w, y).

Proof that T is mixing. Let Eu be the span of eigenvectors whose eigenvalues λ satisfy |λ| >
1 and Es the span of eigenvectors whose eigenvalues are |λ| < 1. This is possible as a
consequence of our discussion of the Jordan form of M , and in particular Eu ⊕ Es = Rn.

We will prove that W u(x) is the projection of x+Eu into the torus and similarly for Es.
In fact, Es,u is M -invariant; Es is contracted by M and Eu is expanded by M .

If U is a small open neighborhood of x0 ∈ Tn, and using the manifold structure to
view U as a subset of Rn, then locally it is true that Wu

∼= Rnu and Ws
∼= Rns , where

nu +ns = n. Thus for x ∈ U we have a decomposition x = t+ s, t ∈ Rnu and s ∈ Rns . Then
W s(t0, s0) ∩ U ⊇ {(t0, s) : s ∈ Rns} ∩ U , and similarly for W u.

We now use the Hopf argument. Suppose g is a weakstar limit of a subsequence of f ◦T n,
for some f ∈ L2(Tn). Then g is W s-invariant and W u-invariant. After normalization we see
that U can be viewed as a subset of Rnu × Rns , but then the Fubini disintegration lemma
implies that g is constant a.e. in U .

So g is locally constant a.e., hence constant a.e. In fact, g =
∫
Tn f . So if h ∈ L2(Tn),

lim
k→∞

∫
Tn

(f ◦ T n)h =

∫∫
Tn×Tn

fh =

∫
Tn
f

∫
Tn
h.

We are also interested in mixing time, i.e. how many times we need to mix before two
random variables f, h become “within ε of being independent.” If we want this to happen
at an exponential rate, we will need to assume f, h ∈ C∞(Tn), or at least some amount
of Sobolev or Hoelder regularity. In particular, indicator functions are rarely exponentially
mixing.
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Chapter 5

Flows on manifolds

Definition 5.1. A flow on a metric space X is a continuous action of R on X.

By a continuous action we mean that the map R→ C(X → X) is continuous.

Example 5.2. Let ẋ = Mx by an ODE on Rn, M ∈ Rn×n. The solution of this flow is of
course

ϕt(x) = etMx.

We say that this flow is hyperbolic if SpecM does not meet the imaginary axis, i.e. eM is a
hyperbolic matrix.

This readily generalizes to when f : Rn → Rn is a bounded Lipschitz function, in which
case the Picard-Lindelof theorem guarantees that ẋ = f(x) has a solution.

Now let µ be a Borel measure on X. Then µ is ϕ-invariant if for all A,

µ(ϕt(A)) = µ(A)

like usual. This is of course equivalent to the assumption that for every f ∈ L2(µ),∫
X

f ◦ ϕt dµ =

∫
X

f dµ.

Example 5.3. Let ẋ = Mx like usual and suppose M is traceless. Then the action of M
preserves Lebesgue measure. Similarly, ẋ = f(x) is measure-preserving iff ∇ḟ = 0.

5.1 Ergodic theorems for flows

We now generalize the ergodic theorem to actions of R.

Theorem 5.4. Let (X,µ) be a probability space, ϕ an action of R on X, and µ is ϕ-invariant.
Then if f ∈ L1(µ),

lim
T→∞

1

T

∫ T

0

f(ϕt(x)) dt = E(f |J)(x)
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where J is the σ-algebra generated by the ϕ-invariant measurable sets. In fact, if f ∈ L2(µ),
then

lim
T→∞

1

T

∫ T

0

f(ϕt(x)) dt = Pf(x)

where P : L2(µ)→ Inv T is the orthogonal projection.

Proof. By reduction to the discrete ergodic theorems we just need to show that the limit of
those integrals exists. Let Ω = RZ, and define Γ : X → Ω by

Γ(x)j =

∫ j+1

j

f(ϕt(x)) dt.

Now let T : Ω→ Ω be the shift (Tω)j = ωj+1. Then Γ ◦ ϕ1 = T ◦ Γ.
Define µ̃(A) = µ(γ−1(A)). This is defined for some σ-algebra in Ω, and is a measure since

µ̃ = γ∗µ. Moreover (Ω, µ̃, T ) is a measure-preserving system:

µ̃(T−1A) = µ(Γ−1 ◦ T−1A) = µ(ϕ−1
1 ◦ Γ−1A) = µ(Γ−1A) = µ̃(A).

Now apply Birkhoff’s ergodic theorem to the function

F (ω) = ω0.

Then
1

n

n−1∑
j=0

F (T j(ω)) =
1

n

n−1∑
j=0

ωj.

So

µ̃{ω : lim
n→∞

1

n

n−1∑
j=0

ωj exists} = 1.

But on the other hand this is

µ{x : lim
n→∞

∫ n

0

f ◦ ϕt(x) dt exists} = 1.

Up to a small error term we may replace a large n in this limit by any sufficiently large
positive real number.

5.2 Geodesic flows in hyperbolic space

Let H2 be the upper-half plane, viewed as a Riemann surface. We define a Hermitian metric
on H2. This means that for every tangent vector a+ ib ∈ TzH2 we assign a length

|a+ ib|z =

√
a2 + b2

Im z
.
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If we were to translate the vector a+ ib along a curve γ then a+ ib becomes longer as Im γ(s)
decreases. In fact the distance element is given by

ds2 =
dx2 + dy2

y2
;

i.e. the length of a curve γ is given by

`(γ) =

∫
γ

ds =

∫ b

a

|z′(s)|z(s) ds =

∫ b

a

|z′(s)|
Im z(s)

ds.

We also have an area form

dA =
dx dy

y2

or in other words, the area of a set Ω is given by

A(Ω) =

∫∫
Ω

dx dy

y2
.

Now consider the group

PSL(2,R) =
SL(2,R)

±1
.

Then PSL(2,R) acts on P1
C by linear fractional transformations; in fact[

a b
c d

]
z =

az + b

cz + d

and it is easy to check that this action preserves R and orientation, so restricts to an action
on H2; namely,

Im
az + b

cz + d
=

Im z

|cz + d|2
.

The action of PSL(2,R) is transitive; i.e. the orbit of every element is H2. It suffices to
check this on a single point, say i; clearly any element in the upper-half plane can be written
in terms of i.

Note that the stabilizer of i is the set of matrices such that

ai+ b

ci+ d
= i;

i.e. those matrices such that a = d, c = −b, a2 + b2 = 1, or in other words the rotation
matrices. Thus the stabilizer of i is isomorphic to P1

R, and so the action of PSL(2,R) on H2

is not free.
Since the action of PSL(2,R) has no poles inH2 and it has nonzero derivatives, PSL(2,R)

is a subgroup of the group of conformal automorphisms of H2. Thus PSL(2,R) also acts on
the tangent bundle TH2; namely, if f ∈ PSL(2,R), (z, ξ) ∈ TH2, then

f(z, ξ) = (f(z), f ′(z)ξ).

Moreover, if f =

[
a b
c d

]
then f ′(z) = (cz + d)2.
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Lemma 5.5. The action of PSL(2,R) preserves the lengths of tangent vectors in TH2.

Proof. Let ξ ∈ TzH2; we must show

|ξ|z =

∣∣∣∣ ξ

(cz + d)2

∣∣∣∣
f(z)

where f =

[
a b
c d

]
. Now |ξ|z Im z = |ξ| so

∣∣∣∣ ξ

(cz + d)2

∣∣∣∣
f(z)

=

∣∣∣ ξ
(cz+d)2

∣∣∣
Im az+b

cz+d

=

|ξ|
|cz+d|2

Im z
|cz+d|2

= |ξ|z.

Thus PSL(2,R) acts on H2 by isometries. In particular, PSL(2,R) preserves the area
element dA.

Thus to study PSL(2,R) we do not actually need to consider the entire tangent bundle
TH2 but rather the unit sphere bundle

SH2 = {(z, ξ) ∈ TH2 : |ξ|z = 1}.

Thus PSL(2,R) preserves SH2. Having carried out all this setup, we are now interested
in dynamical systems with phase space SH2. This is a 3-dimensional real manifold with
parametrization

(x, y, θ) 7→ (x+ iy, yeiθ)

and so is diffeomorphic to R× (0,∞)× T1. Moreover SH2 has an invariant metric

dx2 + dy2

y2
+ dθ2.

In fact we have
d((z, v), (z′, v′)) = d(g(z, v), g(z′, v′))

where g ∈ PSL(2,R). So it has a volume form

dV =
dx dy dθ

y2
.

The volume form dV is left-invariant and right-invariant for the action of PSL(2,R). There-
fore dV is the Haar measure on the unimodular group PSL(2,R).

Lemma 5.6. The map

Φ : PSL(2,R)→ SH2[
a b
c d

]
7→
(
ai+ b

ci+ d
,

i

(ci+ d)2

)
is a diffeomorphism.
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Proof. It suffices to show that this map is a bijection. In fact, the stabilizer of i is sent to[
cos θ sin θ
− sin θ cos θ

]
7→ (i, e2iθi).

So the first two variables of the parametrization of SH2 are controlled by PSL(2,R) modulo
the stabilizer and the final variable is controlled by the stabilizer.

We now introduce a very important flow on SH2 = PSL(2,R). To do this, we note that
we want to define a distance function H2 by

d(z, w) = inf
γ

|γ′(s)|
Im γ(s)

ds

where the inf is taken over all curves γ from z to w. Now we can find a group element
g ∈ PSL(2,R) and a a > 0 such that z = g(i) and w = g(ai). Thus

d(z, w) = d(i, ai)

and so we are only interested in curves

γ(s) = x(s) + iy(s)

such that x(0) = x(1) = 0, y(0) = 1 and y(0) = a. We have∫ 1

0

√
x′(s)2 + y′(s)2

y(s)
ds ≥

∫ 1

0

|y′(s)|
y(s)

ds ≥
∣∣∣∣∫ 1

0

y′(s)

y(s)
ds

∣∣∣∣
= |(log y(s))1

s=0| = | log a|

and so
d(z, w) = | log a|

and the curve which witnesses this is the image of the curve which witnesses that d(i, ai) =
| log a|. In fact this curve γ is a curve on the imaginary axis, which is sent by PSL(2,R) to
a circle on which g ◦ γ is an arc. Moreover, i was the tangent vector to γ at γ(0) = i, so
i/(ci+ d)2 is the tangent vector to g ◦ γ at g ◦ γ(0) = g(i).

We now introduce the geodesic flow which carries (z, ξ) along its respective great circle.
Namely,

ϕt(i, i) = (eti, eti)

and if g(i, i) = Φ(g) is an element of SH2 then it we define

ϕt(g(i, i)) = g(ϕt(i, i)) = g(eti, eti).

In other words, if Gt =

[
et/2 0
0 e−t/2

]
then we have

ϕt(Φ(g)) = Φ(gGt).
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Now Gt ∈ PSL(2,R) so dV is left invariant by the geodesic flow. So in fact ϕ is a measure-
preserving action of R on (SH2, V ).

Note that there is a standard linear fractional transformation H2 → D given by

ζ 7→ ζ − i
ζ + i

.

This gives all of the above structure to D and hence SD. In this space a geodesic is not a
great circle, but a circle which is perpendicular to the unit circle. So in fact an annulus in
D centered at the origin is preserved by ϕ so ϕ is not an ergodic flow.

We are interested in the stable and unstable manifolds of ϕ. We have

W s(z, ξ) = {(w, ζ) ∈ SH2 : lim
t→∞

d(ϕt(w, ζ), ϕt(z, ζ)) = 0}

and similarly for W u. Using the action of PSL(2,R) it suffices to compute W s(i, i), and

W s(i, i) = {(i+ t, i) : t ∈ R}.

This consists of the horizontal line through i, which is being translated upwards. As the
imaginary part increases the distances will vanish. It is reasonable to view W s(i, i) as the
action of the 1-parameter group hst : t ∈ R on (i, i) where

hst =

[
1 t
0 1

]
.

Similarly
W u(i, i) = {−(i+ t)−1, i(i+ t)−2 : t ∈ R}

which is the action of the 1-parameter group hut : t ∈ R on (i, i) where

hut =

[
1 0
t 1

]
.

The actions of hst and hut are called the horocycle flows determined by the geodesic flow on
SH2, and we have

ϕt ◦ hss = hsse−t ◦ ϕt
and similarly

ϕt ◦ hus = huset ◦ ϕt.

Henceforth we change notation to W+ for the stable manifold and W− for the unstable,
and identify Φ with the identity map. We write H for the horocycle flow and G for the
geodesic flow Thus

W±(g) = {g′ ∈ PSL(2,R) : lim
t→±∞

d(gGt, g
′Gt) = 0}.

Then H+
s is the matrix

[
1 s
0 1

]
and H−s is its inverse

[
1 0
s 1

]
, and Gt =

[
et/2 0
0 e−t/2

]
.
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Unfortunately SH2 = PSL(2,R) is not a compact Lie group; in fact, it has infinite volume.
So we cannot hope to use the ergodicity theory to study the horocycle flow. Therefore we
fix a discrete subgroup Γ ⊂ PSL(2,R). For example, the modular group Γ = PSL(2,Z)

is sufficient. Famously, PSL(2,Z) is generated by

[
1

−1

]
,

[
1 1

1

]
. Now Γ may not be a

normal subgroup so the set of left cosets Γ \H2 = {Γz : z ∈ H2} is not a group. But it does
have a Riemannian manifold structure and so it makes sense to talk about the unit tangent
bundle

S(Γ \ H2) = {Γg : g ∈ PSL(2,R)}.

In fact the standard fundamental domain M of the modular surface Γ \ H2 is contained
in the complex projective line P1. It is H2 modulo the action of z 7→ z + 1 and z 7→
−1/z. The modular surface is a Riemann surface, and the volume of the unit sphere bundle
Γ \ PSL(2,R) = S(Γ \ H2) is

V (Γ \ PSL(2,R)) =

∫∫
M×S1

dx dy dθ

y2
≤
∫ 2π

0

∫ 1/2

−1/2

∫ ∞
1/2

dy

y2
dx dθ <∞.

Renormalizing we assume V (Γ \ PSL(2,R)) = 1 as necessary. Then the geodesic flow and
the horocycle flows drop to an action on Γ \ PSL(2,R).

Having discussed the motivating example of PSL(2,R) we consider discrete subgroups Γ
more generally. Notice that Γ is discrete iff there is a g ∈ PSL(2,R) such that

d(g,Γg \ {g}) > 0.

As another example, suppose that we have an 8-gon in the Poincare disk model of hyperbolic
space (so H2 is mapped into the unit disk by the Cayley transform). By identifying sides
we end up with a compact genus-2 Riemann surface. In particular it is a probability space.
We are interested in when the 8-gon is the fundamental domain of Γ.

So suppose that Γ is a discrete subgroup of PSL(2,R) such that

S(Γ \ H2) = Γ \ PSL(2,R)

is a probability space. Then
ϕt(Γg) = Γ(gGt)

is the action of the geodesic flow on S(Γ \ H2). Similarly we have horocycle flows

h±s (Γg) = Γ(gH±s ).

These parametrize the stable and unstable manifolds as

W±(ρ) = {h±s (ρ) : s ∈ R}.

We have the commutation relation

ϕt ◦ h±s = h±se∓t ◦ ϕt.
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We now prove ergodicity of the geodesic flow on Γ \PSL(2,R) using the Hopf argument.
We consider the space of weakstar limits of {f ◦ϕt : t ∈ R} whenever f ∈ L2(Γ \PSL(2,R)).
If f ◦ϕt = f , we will show that f is invariant under the horocycle flows. Therefore f will be
constant. In fact, we will then show that the horocycle flows are ergodic, which implies that

lim
t→±∞

〈f ◦ ϕt, g〉 = E(f)E(g)

so the geodesic flow is mixing. Let ω be the invariant volume form

ω =
dx dy dθ

y2
.

Example 5.7. In zero curvature all this theory is kind of trivial. Let T2 be the flat torus
and let ϕ be the geodesic flow on T2, so

ϕt(x, v) = (x+ tv, v).

Then W±(x, v) = {(x, v)}. This corresponds to T2 being flat, so that there is “no gravity”,
i.e. no two points are attracted to each other.

Theorem 5.8. Suppose that Γ \ PSL(2,R) has finite volume. Then the geodesic flow on
Γ \ PSL(2,R) is ergodic.

Proof. We have
h−u′ ◦ h

+
s ◦ ϕt = h+

s′ ◦ ϕt′ ◦ h
−
u

where u′ = u(1− etsu)−1, s′ = s(1− etsu), and t′ = t− 2 log(1− etsu). This is true whenver
u, s, t are close to 0.

Fix g ∈ Γ \ PSL(2,R) and define local coordinates

Ψ(s, t, u) = h−u′ ◦ h
+
s ◦ ϕt(g).

Then Ψ is a diffeomorphism close to 0. Let U 3 g be open. If g̃ ∈ U then

U ∩W−(g̃) = {Ψ(s, t, ξ)}

where ξ ∈ R is sufficiently close to the u ∈ R such that Ψ(s, t, u) = g̃. In fact,

W−(g̃) = {h−η (g̃) : η ∈ R} = {h−u′+η ◦ h
+
s ◦ ϕt(g) : η ∈ R},

at least when s, t, u, η are close to 0.
We now prove that

U ∩
⋃
T

W+(ϕT (g̃)) = {Ψ(σ, τ, u)}

where (σ, τ) is sufficiently close to (s, t). In fact, this is the set of all

h+
σ′ ◦ ϕt′ ◦ h

−
u′ ◦ h

+
s ◦ ϕt(g)
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or in other words the set of

h−u′′ ◦ h
+
σ ◦ h+

σ ◦ ϕtau ◦ h+
s ◦ ϕt(g)

or in other words
h−u′′ ◦ h

−
σ+se−t ◦ ϕτ+t(g)

or in other words
Ψ(σ + se−τ , t+ τ, u)

or in other words
u(1− et+τ (e−τs+ σ)u)−1.

This proves the claim.
Therefore we have written the space as a product of a two-dimensional space {(s, t)} and

one-dimensional space {u}, and can easily split ω into forms on each of these two space, and
can therefore use the Hopf argument.

70



Chapter 6

Topological dynamics

6.1 Recurrence in topological dynamics

Definition 6.1. Let X be a topological space, T : X → X. We say that T is topologically
transitive if for every pair of nonempty open sets U, V ⊆ X, there is a sequence of ni →∞
such that T−niU ∩ V is nonempty.

In other words, there is a x ∈ U such that T nx ∈ V for infinitely many n.

Definition 6.2. Let X be a topological space, T : X → X. We say that T is topologically
mixing if for every pair of nonempty open sets U, V ⊆ X and every n large enough, T−nU∩V
is nonempty.

Example 6.3. Consider rotations of T1 by α. If α is rational then T is not transitive. But
if α is irrational then T is transitive. But T is not mixing because if U, V are tiny intervals,
then they cannot be trapped in each other since T is an isometry.

We now show that transitive maps are analogously to ergodic maps.

Theorem 6.4. If T is a Borel map and preserves an ergodic probability measure µ with
full support, then T is topologically transitive. In fact, if (X,T, µ) is mixing, then T is
topologically mixing.

Proof. Let U, V be given. For almost every x ∈ U the fraction of the time that the forward
orbit of x lands in V is µ(V ). Since µ has full support it follows that µ(V ) > 0. Therefore
T is transitive.

If (X,T, µ) is mixing, then limn µ(T−nU ∩ V ) → µ(U)µ(V ) > 0, so for large enough n,
µ(T−nU ∩ V ) > 0.

Definition 6.5. For any x ∈ X, let ω(x) be the set of accumulation points of T nx as n→∞.

Thus ω(x) is closed, and is the set of all subsequential limits of T nx as n→∞.

Theorem 6.6. Let (X,µ, T ) be an ergodic system, X a metric space, and µ a probability
measure. For almost every x ∈ X, suppµ ⊆ ω(x).
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Proof. Note that suppµ is separable, since µ is a Borel probability measure. Let {xi}i
be a dense subset of suppµ and let r ∈ Q. By ergodicity there is a set Ωi,r such that
µ(Ωi,r) = 1 and for every x ∈ Ωi,r, there are infinitely many n such that T nx ∈ B(xi, r). If
x ∈

⋂
i,r Ωi,r, which is a set of full measure, then for every i, r there are infinitely many n

such that T nx ∈ B(xi, r). Then xi ∈ ω(x), so {xi : i ∈ N} ⊆ ω(x). Since ω(x) is closed,
suppµ ⊆ ω(x).

Corollary 6.7. Let (X,µ, T ) be an ergodic system, X a metric space, µ a probability
measure, and suppose suppµ = X. Then for almost every x ∈ X, suppµ ⊆ ω(x).

Definition 6.8. A topological space X is topologically complete if X admits a complete
metric. If X additionally is separable, then we say that X is a Polish space.

Every Polish space admits a countable basis. The Baire category theorem also holds in
Polish spaces (even topologically complete spaces); namely, a countable intersection of open
dense sets is still dense.

Theorem 6.9. If X is a Polish space and T : X → X is continuous, then the following are
equivalent:

1. T is transitive.

2. The set of x ∈ X such that ω(x) = X is dense in X.

3. There is an x ∈ X such that ω(x) = X.

Proof. Assume that ω(x) = x and let U, V be given. Then the forward orbit of x hits U, V
infinitely many times. Suppose T nx ∈ U ; then T nx meets V infinitely many times, so T is
transitive.

If T is transitive, let Y = {x ∈ X : ω(x) = X}. Then

Y =
⋂
U

⋂
N≥0

⋃
n≥N

T−nU.

Here the first intersection is taken over nonempty open sets. Since X is Polish we can replace
the first intersection with an intersection over a countable basis for the topology of X. Since
T is transitive,

⋃
n T
−nU is dense, and is open since T is continuous. So Y is a countable

intersection of open dense sets, so is dense by the Baire category theorem.

Definition 6.10. A point x ∈ X is recurrent if x ∈ ω(x).

If X is a metric space then the set of recurrent points is equal to⋂
k>0

⋂
N≥0

⋃
n≥N

{x ∈ X : d(x, T nx) <
1

k
}.

Theorem 6.11. Let (X,µ, T ) be a measure-preserving system, X a metrizable space, and
µ a probability measure. Then almost every x ∈ suppµ is recurrent.
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Proof. Let D be a countable basis for the topology of suppµ. Then by Poincare recurrence,
for every U ∈ D, the set U ′ of x such that x /∈ U or there are infinitely many k such
that T kx ∈ U has full measure. Now

⋂
U∈D U

′ has full measure, and consists of recurrent
points.

Definition 6.12. A point x ∈ X is nonwandering if for every open U 3 x, there are infinitely
many n such that T−nU 6= U is nonempty. If x is nonwandering then we write x ∈ Ω.

If x ∈ X then ω(x) ⊆ Ω. In particular, if x is recurrent, then x is nonwandering. The
converse is not true.

Example 6.13. Let T : T2 → T2 be the cat map. Let Es be the stable eigenline of T . If
x ∈ Es then x approaches 0 exponentially fast. Therefore x is not recurrent.

But if v has rational coefficients, then v is recurrent, and we can approximate any point
on T2 arbitrarily well by such v. Therefore T has no wandering points.

Theorem 6.14. Let X be a metric space, T : X → X continuous. Then x ∈ X is a
wandering point iff there is an open U 3 x such that for all n, T−nU ∩ U is empty.

Proof. One direction is clear. For the converse, suppose x wanders, so there is an open U 3 x
such that for all n large enough, T−nU ∩ U is empty. We need to remove the clause “large
enough.” Let N be the minimal n. Now x is not periodic, so there is an open V 3 x such
that for every i ≤ N , T−iV ∩ V is empty and TNV ⊆ U . Therefore for every i, T−iV ∩ V is
empty.
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Chapter 7

Completely integrable systems

Ergodic systems are intended to be understood as “chaotic”; therefore they can often be not
useful in practice. We now consider more predictable dynamical systems.

7.1 Symplectic geometry

Definition 7.1. Let S be a (finite-dimensional, real) vector space. Then a symplectic form
on S is an antisymmetric, nondegenerate bilinear form. A symplectic space is a vector space
equipped with a symplectic form.

Example 7.2. The canonical example of a symplectic space is R2n, which it will be conve-
nient to view as T ∗Rn, the cotangent bundle of Rn. Let I denote the identity matrix on Rn

and let J =

[
0 I
−I 0

]
. Then σ(z, w) = 〈Jz, w〉 is the standard symplectic form on R2n. In

fact, if (x1, . . . , xn, ξ1, . . . , ξn) are coordinates on R2n, and ω =
∑

j ξjdxj, then σ = dω. So σ
is a closed (hence exact) 2-form.

Since symplectic spaces are vector spaces, we may always view them as having the stan-
dard differential structure of R2n. In particular, it makes sense to ask for the linearization
of a C1-map κ : S1 → S2, say ∂κ, and then if ω is a multilinear form on S2, we can define
the pullback κ of ω, a multilinear form on S1, by

κ∗ω(v1, ..., vn) = ω(∂κ(v1), ..., ∂κ(vn)).

Definition 7.3. Let (S1, σ1) and (S2, σ2) be symplectic spaces. A symplectomorphism is a
map κ : S1 → S2 such that σ1 = κ∗σ2.

Example 7.4. Let κ : R2n → R2n be a linear map, and let σ, J be standard. Let κ(x, ξ) =

(Ax + Bξ,Cx + Dξ); then κ∗σ = σ iff the matrix M =

[
A B
C D

]
satisfies M tJM = J . This

example motivates the definition of a symplectic matrix.

Definition 7.5. Let J be standard for R2n; a symplectic matrix is a matrix M ∈ R2n×2n

such that M tJM = J . The symplectic group is the group of all symplectic matrices.

74



Example 7.6. There exist nonlinear symplectomorphisms. Let ϕ : R2n → R be a smooth
function such that the Hessian determinant of ϕ at (x0, y0) does not vanish, i.e.

det ∂x∂yϕ(x0, y0) 6= 0.

For example, let A ∈ Rn×n be an invertible matrix, and consider the bilinear form ϕ defined
by A.

Let ξ0 = ∂xϕ(x0, y0) and η0 = −∂yϕ(x0, y0). Then the implicit function theorem defines
a mapping close to (x0, ξ0) ∈ T ∗Rn by

κ(x, ∂xϕ(x, y)) = (y,−∂yϕ(x, y)).

To see that κ is a symplectomorphism, we note that

κ∗(dη ∧ dy) = d(−dyϕ) ∧ dy = (−∂2
yϕ dy) ∧ dy + (−∂x∂yϕ dx) ∧ dy

= −∂x∂yϕ dx ∧ dy = ∂x∂yϕ dy ∧ dx = dξ ∧ dx.

Therefore κ defines a symplectomorphism from a neighborhood of (x0, ξ0) to a neighborhood
of (y0, η0).

Theorem 7.7. Let (S, σ) be a symplectic space. Then there is an invertible linear symplec-
tomorphism S → R2n.

Proof. We prove this by the induction on the dimension 2n of S. Since σ is antisymmetric
and nondegenerate, 2n ≥ 2. Assume 2n = 2. Then there are e, f ∈ S such that σ(e, f) = 1,
and {e, f} is a basis of S. Define a linear map κ by κ(e) = (0, 1) and κ(f) = (1, 0); then κ
is an invertible symplectomorphism.

Now if 2n > 2, there are e1, f1, linearly independent, such that σ(e1, f1) = 1. Let S1 be
the span of {e1, f1}, and let S0 be the sum of the kernels of σ(·, w) for w ∈ S1. Then the
codimension of S0 is 2, and if z = xe1 + yf1 ∈ S0, 0 = σ(z, e1) = −y and 0 = σ(z, f1) = x,
so z = 0. Therefore S1 ∩ S0 = 0. Therefore S0 ⊕ S1 = S. For every z ∈ S0, if σ(z, S0) = 0
then σ(z, S) = 0 so z = 0. Therefore σ|S0 is nondegenerate. So by the inductive hypothesis,
we have an invertible linear symplectomorphism κ0 : S0 → R2n−2. Let κ : S → R2n extend
κ0 by sending e1, f1 to R2n/R2n−2 as in the base case.

We now consider manifolds whose tangent bundles are bundles of symplectic spaces.

Definition 7.8. Let S be a 2n-dimensional manifold equipped with a closed, nondegenerate
2-form σ. Then (S, σ) is called a symplectic manifold .

In other words, on every tangent space, σ defines an antisymmetric nondegenerate bilinear
form which varies smoothly, and dσ = 0.

Example 7.9. Let H2 be the hyperbolic plane; then its tangent bundle TH2 can be turned
into a symplectic manifold by setting coordinates (x+ iy, ξ + iη), y > 0, and letting

σ = dξ ∧ dx+ dη ∧ dy.

In fact the tangent bundle of TH2 is diffeomorphic to the half-space of R4, on which σ is the
standard symplectic form.
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We now consider differential forms on symplectic manifolds. For κ a symplectomorphism
and X a vector field, let κ∗X denote the pushforward of X along κ. That is, κ∗X = ∂κ ◦X.
Recall that the pullback κ∗ is defined dually to the pushfoward, i.e. if η is a 1-form and X
is a vector field, we have

κ∗η(X) = η(κ∗X).

We extend this definition to m-forms by declaring that κ∗ preserves ∧.

Definition 7.10. If η is an m + 1-form and X is a vector field, define for vector fields
Y1, . . . , Ym

(Xyη)(Y1, . . . , Ym) = η(X, Y1, . . . , Ym).

In particular, Xyη is a m-form. One can check that if ν is a k-form and η is an m-form
then

Xy(ν ∧ η) = (Xyν) ∧ η + (−1)kν ∧ (Xyη).

None of the above used that κ was a symplectomorphism but we will mainly be interested
in the case that κ is a symplectomorphism.

Example 7.11. Let g : Rn → Rn be a diffeomorphism and w is a smooth function. Then

κ(x, ξ) = (g(x), (∂g(x)t)−1(ξ +∇w(x)))

is a symplectomorphism of R2n and these are the only symplectomorphisms which lift from
g.

7.2 Hamiltonian flows on symplectic spaces

We treat Hamiltonian flows first on symplectic spaces, revisiting symplectic manifolds later.
So fix a symplectic space (S, σ) and coordinates (x, ξ) so that σ = dξ ∧ dx.

Definition 7.12. For any function f ∈ C∞(S), we let Hf , the Hamiltonian vector field of
f , be defined by the relation σ(·, Hf ) = df .

In other words,

Hf =
∑
j

∂f

∂ξj
∂xj −

∂f

∂xj
∂ξj

where {∂xj, ∂ξj} define a basis for the tangent space.
Any vector field X determines a flow by the ODE ·x = X(x). This can also be expressed

by writing
x(t) = exp(tX)(x(0)).

Thus t 7→ exp(tX) is a one-parameter group and a diffeomorphism. So in particular we have
defined a Hamiltonian flow .
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Example 7.13. The notion of a symplectic manifold, and of a Hamiltonian flow, is motivated
by classical mechanics. View x as the position and ξ as the momentum of a particle; let
V (x) be its potential energy and m its mass. Then the energy of the particle is given by

f(x, ξ) =
|ξ|2

2m
+ V (x).

The Hamiltonian vector field is given by

Hf =
1

m
〈ξ, ∂x〉 − 〈∇V (x), ∂ξ〉.

Therefore the particle moves with velocity ξ/m, and its change in momentum is given by
−∇V (x). In particular, its acceleration A satisfies Newton’s second law of motion,

mA+∇V (x) = 0.

To continue further we will need to introduce a Lie algebra structure on the space C∞(S).

Definition 7.14. The Poisson bracket is defined by

{f, g} = σ(∇f,∇g).

Thus the Poisson bracket also satisfies {f, g} = Hfg and

{f, g} =
∑
j

∂f

∂ξj

∂g

∂xj
− ∂f

∂xj

∂g

∂ξj
.

Since vector fields act on functions as linear maps, it makes sense to talk about the commu-
tator of vector fields, and then we have

H{f,g} = [Hf , Hg].

One can check also that we have the Jacobi identity {f, {g, h}}+{g, {h, f}}+{h, {f, g}} = 0,
so {·, ·} is a Lie bracket. Moreover, the flow

ϕt = exp(tHf )

is a symplectomorphism.
While we defined the Poisson bracket on functions, it will be useful to talk about a Lie

algebra structure on any symplectic space (S, σ), so given vectors v, w ∈ S, let

{v, w} = σ(v, w).

We first prove the linear case of Darboux’s theorem. To motivate this theorem, note that
if {e1, . . . , en, f1, . . . , fn} is a basis of (S, σ), it is useful that {ei, ej} = 0, {fi, fj} = 0, and
{ei, fj} = δij. This is a similar condition to requiring that a basis of a Hilbert space is
orthonormal. We say that such a basis is a symplectic basis . Darboux’s theorem says that a
symplectic linearly indepdendent set can always be extended to a symplectic basis.
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Theorem 7.15 (linear Darboux theorem). Let S be a symplectic space of dimension 2n and
A,B ⊂ {1, . . . , n}. Let {ej}j∈A and {fi}i∈B be linearly independent sets and suppose that
{ei, ej} = 0, {fi, fj} = 0, and {ei, fj} = δij. Then there are {ej}j /∈A and {fi}i/∈B such that
{ei, ej} = 0, {fi, fj} = 0, and {ei, fj} = δij.

Proof. We first show that we may assume that A = B. In fact, suppose that the symmetric
difference of these two sets is nonempty, say J ∈ B \ A. Then there is an eJ such that for
every j ∈ A, {eJ , ej} = 0 and every k ∈ B, {eJ , fk} = δJk. Here we used nondegeneracy of
σ and the linear independence hypothesis. One can check that eJ is linearly independent of
ej and fk, so we can add J to A without contradicting the hypothesis.

Suppose that A = B 6= {1, . . . , n}, and let S ′ be the span of {ej}j∈A and {fj}j∈A. Let S0

be the symplectic complement of S ′, i.e. the set of z ∈ S such that for every vector w ∈ S ′
we have σ(z, w) = 0 Then (S0, σ) is a symplectic space. Choose a symplectic basis for S0;
then S = S0 ⊕ S ′ and we’re done.

7.3 Hamiltonian flows on symplectic manifolds

We now revisit Hamiltonian flows but for symplectic manifolds (S, σ). If f ∈ C∞(S) we
define the Hamiltonian vector field Hf for every (p, z) ∈ TS by

σp(z,Hf ) = dfp(z).

Here, if dx1, . . . , dxn, dξ1, . . . , dξn is a basis for T ∗pS, the differential dfp is the covector

dfp =
n∑
j=1

∂f

∂xj
(p) dxj +

∂f

∂ξj
(p) dξj.

Writing ∂x1 , . . . , ∂xn for the dual basis of TpS, z =
∑

j cj∂xj + dj∂ξJ , we have dxj(∂ξk) = δjk
and similarly for ξj, so

dfp(∂xj) =
∂f

∂ξk
(p)

and similarly for ξj. We then define {f, g} = Hfg as before, so

Hf =
n∑
j=1

∂f

∂ξj
∂xj −

∂f

∂xj
∂ξj .

The notion of Poisson bracket still makes sense, as does the Jacobi identity. The proof of
the Jacobi identity uses dσ = 0.

Definition 7.16. The Hamiltonian flow is defined by

ϕt = exp(tHf ).

The Hamiltonian flow is again a symplectomorphism, ϕ∗tσ = σ. In the classical mechanics
interpretation of symplectic geometry, f(x, ξ) is the energy of a particle with position x and
momentum ξ, and is known as the Hamiltonian observable of the dynamical system (S, σ, ϕ).
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Example 7.17. Take f(x, ξ) = ξ4−x4. This is the Hamiltonian of the system ·x = 4ξ3 and
·ξ = 4x3. This can be solved as

x(t) =
x(0)√

1− 8tx(0)2

which blows up in finite time. So we need a Hamiltonian which meets the hypotheses of
Picard’s theorem to be able to solve for the Hamiltonian flow. Here the problem is that
energy is not conserved.

In fact, if |∂2f | ≤ C then ϕt exists for all time, by Picard’s theorem. This is in particular
true if f is smooth and M is compact.

It is useful to know that Hamiltonian flows are always measure-preserving where the
measure is given by the symplectic form. So we can use the tools of ergodic theory to study
Hamiltonian flows.

7.4 Complete integrability

Definition 7.18. Let D be a symplectic manifold of dimension 2n and f ∈ C∞(D). Then
Hf is said to be a completely integrable flow if there are f1, . . . , fn, known as integrals of
motion, such that df1, . . . , dfn are linearly independent, {f, fj} = 0 and {fi, fj} = 0.

Note that the Hamiltonian f is an integral of motion; i.e. Hff = 0, or in other words
ϕ∗tf = f . An integrable flow is one with maximally many independent integrals of motion.
Intuitively an integral of motion is a conserved quantity. It should not be a surprise that
energy is conserved.

Example 7.19. Take f to only depend on momentum, and let fj(x, ξ) = ξj. Then Hf =∑
j ∂ξjf(ξ)∂xj and Hfj = ∂xj so {f, fj} = 0. In fact,

ϕt(x, ξ) = (x+ t∇f(ξ), ξ).

Thus this is a completely integrable system.

Completely integrable systems are in some sense the opposite of ergodic systems: they
have as many invariant sets as they possibly can!

For example, let L be a set where all the integrals of motion fj are constant. Since the dfj
are independent, L is an n-dimensional submanifold. This follows from the implicit function
theorem. Moreover the Hfj are a basis for the tangent space of L.

Recall the following result.

Theorem 7.20. A vector field X is tangent to a submanifold L = {g1 = g2 = · · · = gn = 0}
iff Xgj|L = 0.

Example 7.21 (uncoupled harmonic oscillators). Let (q, p) ∈ R2n be a coordinate system
and let σ = dp ∧ dq. Let ωj > 0 be constants and put

f(q, p) =
1

2

∑
j

p2
j + ω2

j q
2
j
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be the Hamiltonian of a family of n uncoupled harmonic oscillators. Let

fj(q, p) =
1

2

∑
j

p2
j + ω2

j q
2
j

be the Hamiltonian of the jth oscillator. Then the fjs are uncoupled so {fj, fk} = 0. Let D
be the open submanifold fj > 0. We need to restrict to D because on the tangent spaces of
qj = 0 or pk = 0, the dfj are not linearly independent. We have

Hf =
∑
j

pj∂qj − ω2
j qj∂pj .

Moreover

(qj(t), pj(t)) = (qj(0) cos(ωjt) + pj(0)ω−1
j sin(ωjt), pj(0) cos(ωjt)− ωjqj(0) sin(ωjt)).

Interestingly, if we choose coordinates (x, ξ) ∈ Tn × Rn
+ where

qj =

√
2ξj
ωj

cos(xj)

and pj = −
√

2ξjωj sin(xj), then f(q, p) =
∑

j cos(ξj) and dp ∧ dq = dξ ∧ dx. So the state
space of this harmonic oscillator is identical to the positive tangent space of a torus. In these
coordinates,

ϕt(x, ξ) = (x+ tω, ξ).

7.5 The Liouville-Arnold-Jost theorem

Example 7.22. Take M = H2 × R2 and let

f(x, y, ξ, η) = y2(ξ2 + η2).

Then f1 = f and f2 = ξ are integrals of motion. We should look for coordinates on which the
flow is linear. Doing this is far from obvious, but a theorem guarantees that such coordinates
exist for any completely integrable system.

Theorem 7.23 (Liouville-Arnold-Jost). Suppose that f = (f1, . . . , fn) are such that the dfj
are linearly independent, {fi, fj} = 0. Let N = f−1(0). If N is compact and connected,
then N is diffeomorphic to Tn, and there is an open neighborhood U of N which admits
coordinates (x, ξ) ∈ Tn×D1, where 0 ∈ D1 ⊂ Rn is open, given by a map ψ : Tn×D1 →→ U ,
and a local diffeomorphism µ near 0 of Rn such that

µ ◦ f ◦ ψ(ξ) = ξ

and ψ is a symplectomorphism.
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In the coordinates (x, ξ), the action of the Hamiltonian is linear. Unfortunately the
construction of (x, ξ) is far from easy in general; the Liouville-Arnold-Jost theorem is far
from constructive.

Corollary 7.24. If Hf is completely integrable then there are coordinates (x, ξ) such that
the Hamiltonian f only depends on ξ.

In particular, if the Hessian of f is nondegenerate in (x, ξ) then we can solve for ξ using
the implicit function theorem, say ∇ξf = ω. In this case there is a vector j orthogonal to
ω, and quotienting out by the lattice generated by j, we end up with an irrational rotation.

We first prove a weak form of the Liouville-Arnold-Jost theorem, which intuitively says
that symplectic geometry is locally trivial.

Theorem 7.25 (Darboux). Let (M,σ) be a 2n-dimensional symplectic manifold. Let A,B ⊆
{1, . . . , n}. Let qj, pk ∈ C∞ near p0 ∈ M , j ∈ A, k ∈ B, and {qi, qj} = 0, {pk, p`} =
0, {pk, qj} = δkj. Assume that the dpk, dqj are linearly independent. Then there is a
symplectomorphism κ from a neighborhood of 0 ∈ R2n to a neighborhood of p0, such that
κ∗qj = xj, κ

∗pk = ξk.

To prove Darboux’s theorem we need another theorem of differential geometry.

Theorem 7.26 (Frobenius). Let V1, . . . , Vr be vector fields on Rn and r ≤ n. Suppose that
the Vj(0) are linearly independent and [Vj, Vk] =

∑
` cjk`V`, where the cjk` ∈ C∞ near 0.

If S is a submanifold of Rn of codimension r such that T0S + spanVj(0) = Rn, then the
system of equations

Vju = fj

u|S = u0

has a unique solution near 0 iff

Vjfi − Vifj =
∑
k

cijkfk.

In addition, there are local coordinates (y1, . . . , yn) near 0 and a r × r invertible matrix
B = (bij) of smooth functions near 0 such that

∂yi =
r∑
j=1

bijVj.

Proof. We first show that the third paragraph implies the second paragraph. The condition
Vjfi − Vifj =

∑
k cijkfk is invariant under linear combinations so it suffices to check when

Vj = ∂xj , where S is given by (x1, . . . , xr) = h(xr+1, . . . , xn). In this case the cijk = 0 and
we are being asked to check

∂xifj − ∂xjfi = 0

or in other words ω =
∑r

j=1 fj dxj is a closed form. Locally then it is exact, say du = ω.
Then u solves the system of equations.
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We prove the third paragraph using induction on the dimension, say m. If m = 1 let
V1 = a(x)∂x so a(0) 6= 0. Change coordinates to y so that dy = dx/a(x) and y(0) = 0.

Now if m ≥ 2, we may change variables so that V1 = ∂x1 . This is always possible for any
nonvanishing vector field. Without loss of generality we may assume that if j ≥ 2,

Vj =
m∑
`=2

bj`∂x`

by subtracting off bj1V1 from V1. Let x′ = (x2, . . . , xm) and change variables in x′ using
induction so that if x1 = 0,

Vj =
r∑
`=2

bj`∂x` .

Thus we have discarded (xm+1, . . . , xr). Then

∂bj`
∂x1

= V1Vjx` = [V1, V`]x` =
r∑

k=2

c1jkVkx` =
r∑

k=2

c1jkbk`.

By uniqueness of ODE, it follows that bj`(x) = 0 for ` > r.

Proof of Darboux’s theorem. We can assume p0 = 0. Set xj = qj and ξk = pk where j ∈ A
and k ∈ B. By the linear Darboux theorem, we can extend (x, ξ) to a full set of coordinates
such that at 0, {xi, xj} = {ξi, ξj} = 0 and {ξk, x`} = δk`. In particular, Hqj(0) = −∂ξj and
Hpk(0) = ∂xk .

Suppose J /∈ A (the case for B is similar). We must find qJ such that {qJ , qj} = 0 and
{qJ , pk} = δJk. We thus try to solve the equation

HqiqJ = 0, HpkqJ = δkJ , qJ(x, ξ) = xJ

when ξj = 0 and xk = 0. The solution to this equation exists by Frobenius’ theorem.

An important special case to Darboux’s theorem is when A = ∅ and B = {1, . . . , n},
i.e. we are given coordinates ξ1, . . . , ξn ∈ C∞ such that dξj(p0) are linearly independent and
{ξi, ξj} = 0. One then can find coordinates x1, . . . , xn such that

∑
j dξj ∧ dxj is indistin-

guishable from the standard system of symplectic coordinates in R2n.

Proof of the Liouville-Arnold-Jost theorem. Let Φ : Rn/Γ→ f−1(0) be our torus diffeomor-
phism, and ψ0 be a local diffeomorphism from close to 0 to close to ρ ∈ f−1(0), such that
ψ∗0fj = ξj and ψ∗0σ is the standard symplectic form. Let Φt be the Hamiltonian flow.

If |t| is small,
Φt ◦ ψ0(x, ξ) = ψ0(x+ t, ξ).

We want to use this relation to define ψ, an extension of ψ0. That would mean that for all
R there is a neighborhood of 0, D2(R), such that Φt(ψ(0, ξ)) is well-defined for t ∈ B(0, R)
and ξ ∈ D2(R). If not then there is an R such that for all r, there are |t| ≤ R, and |ξ| ≤ r,
such that Φt(ψ(0, ξ)) is not well-defined. Then Φt(ψ0(0, ξ)) /∈M which is impossible.

Let γj be the generators of Γ.
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Lemma 7.27. The map θ : B(0, R)×D2(R)→M , θ(x, ξ) = Φx(ψ(0, ξ)) satisfies

θ∗σ =
∑
j

dξj ∧ dxj.

Proof of lemma. If (x, ξ) is small,

θ(x, ξ) = Φx(ψ0(0, ξ)) = ψ0(x, ξ)

and the claim follows from the fact that ψ0 is a symplectomorphism.
Now put θs(x, ξ) = θ(x− s, ξ), which is defined on B(s, R)×D2(R). Then

θ∗σ = (Φs ◦ θs)∗σ = θ∗−sΦ
∗
sσ = θ∗−sσ

so
θ∗σ =

∑
j

dξj ∧ (dxj − dsj)

but the standard symplectic form is invariant under translation.

We want to find γj(ξ) such that

θ(γj(ξ), ξ) = θ(0, ξ).

This mimics the fact that θ(γj, 0) = θ(0, 0).
Now ψ−1

0 (θ(γk, 0)) = (0, 0) so if (y, η) is small, the definition

ρ(y, η) = ψ−1
0 (θ(γk + y, η))

makes sense (we put ρ(0) = 0). Then

ξj = ψ∗0fj(x, ξ) = fj(θ(γk + y, η)) = fj(ψ0(y, η)) = ηj

but ρ = ψ−1
0 ◦ θγk and ψ0, θγk are symplectomorphisms, so ρ is a symplectomorphism. Then

ρ∗
∑
j

dξj ∧ dxj =
∑
j

dηj ∧ dyj.

This follows by the lemma. So

ρ(y, η) = (y +
∂Qk

∂η
(η), η)

for some function Q such that
∂Qk

∂η
(0, 0) = 0.

In particular if we put (x, ξ) = ρ(y, η) we have ξ = η. Therefore, since ψ0 is injective,

ψ0(y + ∂ξQk(ξ), ξ) = ψ0(0, ξ)
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implies that we have the differential equation

y +
∂Qk

∂ξ
= 0.

Thus y is determined by ξ. This uniquely determines the function γk. Now, by the group
property of Φt, we can translate γk for all times, using the periodicity

θ(x+ γk(ξ), ξ) = θ(x, ξ).

Thus θ : Rn ×D2 →M is well-defined.
Now forget that k was the index used to describe the generators of the lattice Γ, and use

it as a sequential index.
If we define Γ(ξ) = {

∑
jmjγj(ξ)}, then we have a map

θξ :
Rn

Γ(ξ)
→ f−1(ξ) ∩ U.

Now this map is surjective, but to check that it is injective, we notice that we just need to
check when ξ is close to 0. If (xk, ξk) and (x′k, ξ

′
k) are sequences of points (necessarily not in

Γ) such that γk → 0, xk − x′k /∈ Γ(ξk), and θ(xk, ξk) = θ(x′k, ξ
′
k). Passing to a subsequence,

we choose x, x′ such that xk → x and x′k → x′. Then θ(x, 0) = θ(x′, 0), so x− x′ ∈ Γ(0), so
there is a γk ∈ Γ(ξk), such that d(xk − x′k, γk) is small, but since Γ is discrete it follows that
γk is a constant sequence. Translating by γk we have xk − x′k = 0. Thus close to any point
θξ is injective, hence θξ is injective.

Finally we must “normalize periods”, i.e. find symplectomorphisms to replace Γ(ξ) with
Γ. This is accomplished by a map σ such that

σ∗
∑
j

dξj ∧ dxj =
∑
j

dηj ∧ dyj.

7.6 The Toda lattice

We now consider the first example of a completely integrable system which is important in
practice.

Suppose we have n particles in RN , interacting according to the Hamiltonian

H(q, p) =
n∑
j=1

p2
j

2mj

+
∑
i<j

Vij(qi − qj).

Here qi is the position of the ith particle and pi is its momentum.

Example 7.28. The planetary system is given by

Vij(q) =
cij
|q|
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for some cij = c(mi,mj). Here

q̇j =
mj

pj

and
ṗj = −∂qjU(q)

where
−∂qjU(q) = mj q̈j.

Trying to understand this system (using 7th-order perturbation theory by hand) lead to the
discovery of Neptune.

Definition 7.29. Let Wj(x) = ex be the potential, and N = 1. Here

H(q, p) =
1

2

n∑
j=1

p2
j +

n−1∑
j=1

eqj−qj+1 ,

where the particles are lined up so −∞ = q0 < q1 < · · · < qn < qn+1 = ∞. This system is
called the Toda lattice.

We observe that the total momentum

P =
∑
j

pj

of the Toda lattice is conserved. Since {P,H} = 0, the Toda lattice is completely integrable
when n = 2. But a miracle happens, and the Toda lattice is actually completely integrable
for all n. But the state space of the Toda lattice is not compact so we cannot use the
Liouville-Arnold-Jost theorem.

Theorem 7.30. There are integrals of motion Fj for the Toda lattice, which are polynomials
in pk and eqk−qk+1 .

To see this, we introduce Flaschka’s coordinates . Here

aj =
e(qj−qj+1)/2

2

where j < n and

bj = −pj
2

where j ≤ n. Then
ȧj = aj(bj+1 − bj)

and
ḃj = 2(a2

j − a2
j−1).

Now this is missing a dimension but note that s 7→ (q+(s, . . . , s), p) is an action of R on R2n

which preserves the system, namely translating all the qj by t, so we just need coordinates
on R2n−1 = R2n/R.

85



Now let L be the matrix with bi on the diagonal and ai on the subdiagonal and super-
diagonal. Let B be the matrix with ai on the superdiagonal and −ai on the subdiagonal.
Then

dL

dt
= [B,L]

if and only if (q, p) is a solution of the Hamiltonian flow.

Definition 7.31. A pair of matrices (B,L) such that dL = [B,L] dt if and only if the entries
of B,L satisfy a Hamiltonian flow H are called a Lax pair for H.

The fact that (B,L) is a Lax pair for the Toda lattice is a “miracle.” It completely
trivializes the study of the Toda lattice.

Example 7.32. The KdV equation is a PDE

ut = 6uux − uxxx

which admits a Lax pair. Here L = −∂2
x + u and B = −4∂3

x + 6u∂x + 3ux are operators
acting on C∞.

Note that L is symmetric, so it is diagonalizable and its eigenvalues are real. The aj >
0 since they are exponentials, and a computation shows that every eigenvalue has a 1-
dimensional eigenspace. In fact, if ϕ is an eigenvector for the eigenvalue λ and we normalize
so ϕn = 1, ak−1ϕk−1 + bkϕk = λϕk, so ϕ is uniquely defined by the normalization and a
backwards recursion. Therefore L only has simple eigenvalues. Therefore λj(a, b), the jth
eigenvalue of L(a, b), determines a smooth function on Rn−1

+ × Rn. This can be proven by
using the implicit function theorem on the characteristic polynomial of L when (a, b) is close
to 0.

In fact λj is constant on any flow.

Definition 7.33. Two matrices are isospectral if their spectra are identical.

We must show that the L(a(t), b(t)) are isospectral in t. To see this we solve the equation

∂tU(t) = B(a(t), b(t))U(t)

where U(0) = 1. This is a system of ODE, so U exists. Now U(t) is an orthogonal matrix,
since U(0) is and

d

dt
(U(t)TU(t)) = 0

so U(t)TU(t) = U(0)TU(0) = 1. In other words, we have unitary of Schrodinger propagation.
We also can show that L(t)U(t) = U(t)L(0). By unitarity it suffices to show that

d

dt
U(t)TL(t)U(t) = 0

and this follows by a straight computation:

U̇TLU + UTLU̇ + UT L̇U = UTBTLU = UTLBU = UT [B,L]U

= UT [L,B]U + UT [B,L]U = 0.
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Therefore L(a(t), b(t)) is isospectral. So

Fk(q, p) = tr(L(a, b)k)

is a preserved quantity. In fact F1 = trL = −P/2, while F2 = trL2 = H/2.
As we require, the dFk are linearly independent. It suffices to show that the determinant

det

(
∂Fk
∂λj

)
6= 0

and we have Fk =
∑

j λ
k
j . So

det

(
∂Fk
∂λj

)
= n!

∣∣∣∣∣∣∣∣∣∣∣

1 · · · 1
λi · · · λi
λ2
i · · · λ2

i
...

λn−1
i · · · λn−1

i

∣∣∣∣∣∣∣∣∣∣∣
= n!

∏
i<j

λj − λi

by Vandermonde’s determinant formula, which is nonzero since the eigenvalues are simple.
We must show that {Fj, Fk} = 0 and it suffices to show {λj, λk} = 0. Let λ = λj, µ = λk,

Lϕ = λϕ, and Lψ = µψ. Assume ||ϕ|| = ||ψ|| = 1 and 〈ϕ, ψ〉 = 0. If f, g are smooth then

Ψ∗{f, g}∗ = {Ψ∗f,Ψ∗g},

and the pushforward is along the change-of-coordinates Ψ : (p, q) 7→ (a, b). So we just want
to show

{λ, µ}∗ = 0.

Theorem 7.34 (Feynman-Hellman). Suppose L is a differentiable one-parameter family of
operators, and Lϕ = λϕ, where λ is a simple eigenvalue. If ||ϕ|| = 1 then

·λ = 〈(Lϕ)′, ·ϕ〉.

Proof. Differentiating Lϕ using the Leibniz rule we have

(Lϕ)′ = (λϕ)′ + λ · ϕ.

Now take the inner product with ϕ on both sides and use the fact that (||ϕ||)′ = 1.

We have

∂bjL = ej ⊗ ej
∂ajL = ej ⊗ ej+1 + ej+1 ⊗ ej.

so by the Feynman-Hellman theorem,

∂bjλ = ϕ2
j

∂ajλ = 2ϕj+1ϕj.

87



Moreover

4{λ, µ}∗ =
∑
j

(aj∂ajλ− aj−1∂aj−1
λ)∂bjµ− (aj∂ajµ− aj−1∂aj−1

µ)∂bjλ

and plugging in the Feynman-Hellman computation,

2{λ, µ}∗ =
∑
j

(ajϕjϕj+1 − ajϕj−1ϕj)ψ
2
j − (ajψjψj+1 − ajψj−1ψj)ϕ

2
j .

We take the convention a0 = an = 0. We introduce the Wronskian,

Wj = aj(ϕj+1ψj − ϕjψj+1).

Here we are thinking of the ψ, ϕ as functions on finite sets, and viewing Wj −Wj−1 as the
“derivative” of Wj. In this sense Wj is the Wronskian of ϕ, ψ.

In fact,
Wj −Wj−1 = (λ− µ)ϕjψj.

This can be verified by computing

Lϕj = λϕjψj

Lψj = µψjϕj

and subtracting the two lines.
It follows that

W 2
j −W 2

j−1 = (λ− µ)(ajϕj+1ϕj − aj−1ϕj−1ϕj)ψ
2
j − A)

where A is the same as the previous term but with ϕ replaced with ψ. Then

2{λ, µ}∗ =
1

λ− µ
∑
j

W 2
j −W 2

j−1 = (λ− µ)−1(W 2
n −W 2

0 )

since the Wronskians telescope, and by our convention we have Wn = W0 = 0. So {λ, µ}∗ =
0.

Now define
xj = |〈ϕj, en〉|.

We will study the evolution of x. Let

f(z) = 〈(z − L)−1en, en〉 =
∑
j

x2
j

z − λj
.

Since the aj > 0 it is no loss of information to replace aj with a2
j . Define

χ : Rn−1
− × Rn → Rn × {x ∈ Rn

+ : ||x|| = 1}
(a2, b) 7→ (λ, x).

If we can invert χ we will know how (a, b) and hence (q, p) evolves explicitly in terms of the
eigenvalues λ and scalars x.
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Lemma 7.35. We have

− ẋj
xj

= −λj +
∑
k

λkx
2
k.

Moreover, this flow preserves the set {x ∈ Rn
+ : ||x|| = 1}.

Proof. To see that ||x|| = 1 is preserved, we simply expand out the definition of ||x||,
differentiate it, and notice that ||x||′ = 0. Moreover, if αj = log xj, then α̇ is Lipschitz and
so exists for all time by a Picard-type theorem.

As for the main claim,
L(t)U(t) = U(t)L(0)

so
ϕk(t) = U(t)ϕk(0).

Since ·U = BU ,
·ϕk(t) = B(t)ϕk(t).

Then
〈·ϕk(t), en〉 = an−1〈ϕn, en−1〉+ bnxk

so
·xk = −λkxk + bnxk.

Since ||x|| = 1, (||x||)′ = 0, so differentiating,

0 = −
∑
k

λkx
2
k + bn.

The system given by the lemma is easy to solve. Set

yj(t) = yj(0)e−λjt

and set
xj =

yj
||y||

.

Using this normalization,
xj(t)

2

xj(0)2
=

e−2λjt∑
k xk(0)2e−2λkt

.

We can therefore view x as a linear dynamical system. Thus, if we can invert χ, we will
explicitly have solved the system (q, p).

We can view the situation as a commutative diagram

(q(0), p(0)) L(0) (λ, x(0))

(q(t), p(t)) L(t) (λ, x(t))
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We are looking for the arrow (λ, x(t))→ L(t).
Put

f(z) = 〈(z − L)−1en, en〉 =
∑
j

x2
j

z − λj
.

Theorem 7.36 (Stjeltes). We have

f(z) =
1

z − bn −
a2
n−1

z−bn−1−
a2
n−2

z−bn−2−···

.

Proof. Let Lj be the matrix containing the first j rows and columns of L. Let ∆j(z) =
det(z − Lj). By Cramer’s rule,

f(z) =
∆n−1(z)

∆n(z)
.

Moreover,
∆j(z) = (z − bj)∆j−1(z)− a−1

j−1∆j−2(z)

by the recurrence definition of the determinant. Here we take ∆0 = ∆−1 = 0.
Let ρj = ∆j/∆j−1, so

ρj(z) = z − bj −
a2
j−1

ρj − 1
.

Here we take ρ1(z) = z − b1. Then ρn = f−1 gives the continued fraction expansion.

Now f = Pn−1/Qn where

Pn−1(z) =
n−1∑
j=1

x2
j

∏
i 6=j

z − λi

and

Qn(z) =
n∏
j=1

z − λj.

A straight computation gives

Qn(z)

Pn−1(z)
= z − β − αQn−2(z)

Pn−1(z)
.

Thus

f(z) =
1

z − β − αg(z)

where g = Qn−2/Pn−1 and α, β are uniquely determined by x, λ, and g is of the same form
as f , say

g(z) =
n−1∑
j=1

σj
z − µj
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so σj is the residue of µj at z. Thus

σj = − 1

αf ′(µj)
> 0.

We now show that the Toda lattice admits scattering, i.e. we can determine its behavior
at t = +∞ from its behavior at t = −∞.

Theorem 7.37. There is a δ > 0 such that qj(t) = α+
j t + β+

j + O(e−δt) as t → +∞ and

qj(t) = α−j t+ β−j +O(eδt) as t→ −∞, where λi < λi+1, α+
j = −2λn−j+1, and α−j = −2λj.

Proof. aj(t)
2 and bj(t) are rational functions of e−λjt. Thus they have asymptotic expansions

c±1 e
η±1 t + c±2 e

η±2 t + · · · as t→ ±∞ and η±j =
∑

km
±
jkλj where m±jk ∈ Z.

Now ∫ t2

t1

a2
j − a2

j−1 = bj(t2)− bj(t1)

telescopes, and since 2
∑

j b
2
j + 4

∑
j a

2
j is a conserved quantity a sum of bj must be bounded.

Therefore a2
j ∈ L1(dt). Since aj has an asymptotic expansion in exponentials, it follows that

aj → 0. Thus L(t)→ L(±∞) which is a diagonal matrix. Solving ȧj/aj = bj+1− bj we have
bj(+∞) = λn−j+1 and b−j(−∞) = λj.

So the velocities are not just permuted, but are reversed in order.

7.7 The QR algorithm

We now apply the theory of completely integrable systems to study a diagonalization algo-
rithm from numerical linear algebra. It was voted among the top ten algorithms of the last
century, along with the fast Fourier transform, which confusingly was discovered by Gauss
long before the last century.

Theorem 7.38. For every invertible real matrix A there is a unique factorization A = QR
such that Rii > 0, Q is orthogonal, R is upper triangular.

Proof. Let A = [a1 · · · an]. Since A is invertible the ai are linearly independent, so apply the
Gram-Schmidt algorithm to A to obtain an orthogonal matrix Q. Let

R =

〈e1, a1〉 〈e1, a2〉 · · ·
0 〈e2, a2〉 · · ·

...


then A = QR. If Q1R1 = Q2R2 then Q−1

1 Q2 = R2R
−1
1 so R2R

−1
1 is an upper triangular

matrix which is positive on the diagonal and yet has determinant 1, so R2 = R1.

Given A = QR, let T (A) = RQ. Note that

T (A) = Q∗QRQ = Q−1AQ.

Thus T (A) and A are isospectral, and T preserves the space Bsa of self-adjoint matrices.
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Theorem 7.39 (Kublanovskya-Francis, 1961). If A is positive-definite and self-adjoint with
simple eigenvalues then

lim
n→∞

T n(A) = diag(λi)

where λi are the eigenvalues of A, λi > λi+1.

That is, T is a discrete isospectral system which converges to the diagonalization. This is
analogous to the Toda lattice, where we had a continuous isospectral system which converged
to the diagonalization. We proved that the convergence of L is exponential, namely that

||L(t)− L(∞)|| = O(exp(−2tmin
j

(λj − λj−1))).

Let J be the space of tridiagonal matrices such that the subdiagonal and superdiagonal
are positive and identical. An algebraic computation shows that T sends J to tridiagonal
matrices. Recall from Toda lattice theory that there is a diffeomorphism χ : J → {(λ, x)}
where λi > λi+1 > 0, λ is the spectrum of the preimage L, xj > 0, and ||x|| = 1. Here x is
defined by the property that if L = UΛU∗ then x = U∗e1.

Lemma 7.40. Let
(λ, xk) = χ(T k(χ−1(λ, x0))).

Then
||Λkx0||xk = Λkx0.

Proof. It suffices to check this when k = 1. This can be checked by noting that the unitary
matrix U1 obtained by diagonalizing T (Λ) is given by the Gram-Schmidt algorithm.

Recall that the Toda flow is given by

x(t) =
eAtx(0)

||eAtx(0)||
.

Similarly we here have

xk =
eAkx(0)

||eAkx(0)||
where A = log Λ. Thus in the coordinates (x, λ) the QR algorithm is a discretized Toda
flow, provided that our initial conditions were tridiagonal.

We now construct a discrete Lax pair for the QR algorithm. For any matrix A, we may
uniquely decompose

A = πSA+ πLA

where πSA is anti-self-adjoint and πLA is lower triangular. In fact, πSA is given by taking
the part of A above the diagonal and reflecting it over the diagonal. Given a continuous
function G : R+ → R we extend it to self-adjoint matrices L by

G(L) = UG(Λ)U∗

where LU = UΛ is the diagonalization of L given by the spectral theorem and G acts on
diagonal matrices pointwise. This is a functional calculus for self-adjoint operators. Let
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BG = πS ◦ G. Then the map L 7→ [BG(L), L] preserves tridiagonality. This can be easily
checked for G(λ) = λk and then may use a variant of the Stone-Weierstrass theorem. One
may then check that if we define

·x(t) = G(Λ)x(t)− 〈G(Λ)x(t), x(t)〉x(t)

then ·L = [BG(L), L]. For appropriate G this gives a Lax pair for the QR algorithm.
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Chapter 8

Complex dynamics

8.1 Siegel’s KAM theorem

Let U, V be neighborhoods of 0 in C. Assume f : U → V is holomorphic, f(0) = 0,
f ′(0) = e2πiθ where θ is an irrational angle. We would like to find a conformal transformation
ϕ defined locally near 0 which conjugates f to rotation by e2πiθ. If this is the case, we will
have lots of invariant sets for f , namely the ϕ-image of circles centered around 0. Whether
this is possible depends strongly on number-theoretic properties of θ.

One can view the rotation e2πiθ as a simple Copernican model of the solar system; then the
real solar system is a slight perturbation, and we would like to know that it is quasiperiodic.
That is, a slight perturbation of f preserves the dynamics.

Theorem 8.1 (Siegel). Suppose that θ is diophantine in the sense that there is a C > 0
and µ large enough that for all p, q ∈ Q,∣∣∣∣θ − p

q

∣∣∣∣ ≥ C

qµ
.

Then there is a conformal transformation ϕ such that

f(ϕ(z)) = ϕ(e2πiθz).

We first show that there are diophantine numbers. Let µ > 2. Let E be the set of all θ
such that for infinitely many p, q, |θ − p/q| < q−µ. Then for every n,

E ⊆
⋃
q≥n

q⋃
p=0

[p/q − q−µ, p/q + q−µ]

so

|E| ≤
∑
q≥n

q∑
p=1

2q1−µ = O(n2−µ)

so E has measure 0, hence most numbers are diophantine.
So fix a diophantine number θ and let λ = e2πiθ.
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We now observe that if
f(ϕ(z)) = ϕ(λz),

then ϕ is automatically injective, hence conformal by the inverse function theorem. In fact
if ϕ(z) = ϕ(w) then

ϕ(λz) = f(ϕ(z)) = f(ϕ(w)) = ϕ(λw)

and iterating we see that
ϕ(λnz) = ϕ(λnw)

but the λnz are a set with an accumulation point, and if two holomorphic functions agree
on a set with an accumulation point then they agree everywhere.

Lemma 8.2. There is a ϕ iff there is a δ > 0 such that fn(z) is a bounded sequence if
|z| < δ.

Proof. If ϕ exists then
fn(z) = ϕ(λnϕ−1(z))

which is obviously bounded.
Conversely, assume a bound M exists and let

hn(z) =
1

n

n−1∑
m=0

λ−mfm(z)

be the ergodic average. By assumption |hn(z)| ≤ M . By the Cauchy estimate for the disc
|z| < δ/2,

|h′n(z)| ≤ 2M

δ

so by the Ascoli theorem, we can pass to a Cauchy subsequence and assume limn hn = h in
C0. By Morera’s theorem h is holomorphic, and

h′n(0) =
1

n

n−1∑
m=0

λ−mλm = 1

so h′(0) = 1 and by the inverse function theorem h has a conformal inverse ϕ.

We now show that some hypothesis on θ is necessary.

Theorem 8.3 (Pfeiffer). There is a θ such that for any polynomial f of degree ≥ 2, no ϕ
exists.

Proof. Assume
f(z) = zd + · · ·+ λz.

Assume ϕ exists and is defined if |z| < δ. Let z1, . . . , zdn−1 be the nonzero fixed points of
fn, which exist since f ′(0) = λ 6= 0. Then they are nonzero zeroes of

fn(z)− z = zd
n

+ · · ·+ (λn − 1)z.
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By assumption, |zj| ≥ δ; since |z| < δ is conjugated to rotation. Thus

δd
n

< δd
n−1 ≤

∏
j

|zj| = |λn − 1|.

The last equality is true because the zj are zeroes of a polynomial whose constant term is
λn − 1. So we must find a θ such that for every d, δ we can find an n such that

δd
n ≥ |λn − 1|.

For some sequence qk ∈ N, to be determined, let

θ =
∞∑
k=1

2−qk .

Then
|1− λ2qk | ∼ 2qk−qk+1 .

Assume δ2qk < |λ2qk − 1|, so

δd
2qk

= O(2qk−qk+1).

Thus
qk+1 = Oδ(d

2qk ).

Now let
log qk+1 ≥ keqk

which is a contradiction.

We now prove Siegel’s theorem. Siegel used an extremely complicated number-theoretic
proof, but we will give Moser’s proof, which easily follows from KAM theory.

Proof of Siegel’s theorem. Our goal is to construct ϕ with the desired properties, which in
particular imply

ϕ(z) = z +O(z2).

Thus we define ϕ(z) = z+ ϕ̂(z) so ϕ̂(z) = O(z2), and write f(z) = λz+ f̂(z). As in the case
of the cat map, we want to solve the equation

ϕ̂(λz)− λϕ̂(z) = f̂(z + ϕ̂(z))

for ϕ̂. Unfortunately the cat map was hyperbolic, while the dynamics here are rotational.
Let

f̂(z) =
∞∑
n=2

bnz
n.

Linearize the equation we want to solve, we get a function

ψ̂(z) =
∞∑
n=2

cnz
n,
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such that
ψ̂(λz)− λψ̂(z) = f̂(z).

Solving the Taylor series we have

cn =
bn

λn − λ
.

Since θ is diophantine, there are C, µ such that

|λn − 1|−1 ≤ C
nµ

µ!
.

Moreover |f̂ ′(z)| < δ if |z| < ε for some ε > 0.
In fact, Cauchy estimates give us

|bj| ≤
δ

jεj−1
.

Assume η < 1/5 and η is much smaller than ε. Then if |z| < (1− η)ε,

|ψ′| ≤
∞∑
j=2

jbj
|λj − λ|

εj−1(1− η)j−1 <
Cδ

µ!

∞∑
j=1

j(j + 1) · · · (j + µ− 1)(1− η)j−1 =
Cδ

ηµ+1

where we used the Newton binomial formula. Thus if Cδ < ηµ+2, which is possible if ε and
hence δ are small enough, if |z| < (1− η)ε then

|ψ̂′(z)| ≤ η.

Thus ψ carries D(0, ε(1− 4η))→ D(0, ε(1− 3η)) and similarly if |z| = ε(1− η),

|ψ(z)| = |z + ψ̂(z)| ≥ ε(1− 2η).

Assume |w| < ε(1− 2η) and |z| = ε(1− η). Then

|w| = |ψ(z)− (ψ(z)− w)| < |ψ(z)|.

By Rouche’s theorem, ψ and ψ−w have the same number of zeroes in D(0, ε(1− η)). Then
ψ is a bijection D(0, ε(1− η))→ D(0, ε(1− 2η)). We thus have a diagram

D(0, ε(1− 4η)) D(0, ε(1− 3η)) D(0, ε(1− 2η)) D(0, ε(1− η)).
ψ f ψ−1

Let ψ ◦ g = f ◦ ψ, so g carries D(0, ε(1− 4η))→ D(0, ε(1− η)).
We now estimate ĝ, where g(z) = λz + ĝ(z). We have ψ ◦ g = f ◦ ψ. Thus

f(ψ(z)) = λz = ĝ(z) + ψ̂(g(z)) = λ(z + ψ̂(z) + f̂(z + ψ̂(z))).

Therefore
ĝ(z) + ψ̂(λz + ĝ(z)) = λψ̂(z) + f̂(z + ψ̂(z)).
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Since f̂(z) = ψ̂(λz)− λψ̂(z),

ĝ(z) = ψ̂(λz)− ψ̂(λz + ĝ(z)) + f̂(z + ψ̂(z))− f̂(z).

Let
C = max

D(0,(1−4η)ε)
|ĝ|.

Then
C ≤ sup |ψ̂′|C + sup |f ′| sup |ψ̂| ≤ Cη + δ sup |ψ̂|.

We apply Schwarz’ lemma to ψ̂′ to see

|ψ̂′(z)| ≤ c0
δ|z|

ε(1− η)η1+µ
.

Integrating both sides, we bound |ψ̂| and see that

C ≤ Cη +
c0δ

2

2ηµ+1
(1− η)ε.

Solving for C,

max
D(0,(1−4η)ε)

|ĝ| ≤ c0δ
2

2
η−µ−1ε.

By a Cauchy estimate,

|ĝ′(z)| ≤ c0δ
2

2ηµ+2

if |z| < (1− 5η)ε.
We now iterate: let g0 = f , and let ψn+1 ◦ gn+1 = gn ◦ ψn+1. Let ηk = αkη0, α < 1, and

R = ε
∏
k

1− 5ηk > 0.

Then |ĝ′n| ≤ δn ≤ ηµ+2
k → 0. So gn → λ and

f ◦ ϕn = ϕngn.

A calculation using a Cauchy estimate shows that |ϕn+1 − ϕn| ≤ δnC → 0, so the ϕn are a
Cauchy sequence, say ϕn → ϕ, and f ◦ ϕ = ϕ ◦ λ.
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Chapter 9

Entropy and information theory

We now consider a way to measure the complexity of a dynamical system. Though this was
originally motivated by thermodynamics and statistical mechanics, it did not come to full
form until work of Shannon in 1948.

9.1 Shannon’s axioms of entropy

Fix a probability space (X,Σ, µ) and a partition P = (Pi)i of X (so Pi ∩ Pj is empty and⋃
i Pi = X). Let pi = µ(Pi), so pi is the “probability of finding a particle in Pi.” Entropy is

supposed to measure the “uncertainty” of the box Pi that we find the particle in.
Equivalently, we seek motivation from ergodic theory. Let (Xj,Σj, µj, Tj)j be a family

of measure-preserving systems. Recall that (X1, T1), (X2, T2) are isomorphic if there is an
isomorphism of measurable spaces ϕ : X1 → X2 such that ϕ ◦ T1 = T2 ◦ ϕ. (Note that ϕ is
not assumed to be an isomorphism of measure spaces.) We want an invariant which allows
us to distinguish two measure-preserving systems. (This is analogous to algebraic topology.)

We want a function H defined on probability vectors ~p ∈ ∆n, where pi = µ(Pi) is
obtained from the partition P , and ∆n is the n-simplex, and H : ∆n → R. In this case, we
let H(P) = H(~p). We want H(~p, 0) = H(~p) (so adding an empty set to the partition does
not affect the complexity) and k 7→ H(1/k, . . . , 1/k) is increasing (so complexity increases
as the partition gets finer).

If Q is also a partition, we let P ∨Q be the set of all intersections of entries in P and in
Q. We will demand

H(P ∨Q) = H(P) +H(Q|P)

where

H(Q|P) =
∑
P∈P

µ(P )µ

(
µ(Q1 ∩ P )

µ(P )
, · · · , µ(Qk ∩ P )

µ(P )

)
is the “conditional complexity” of Q given that we know P . These conditions on H are
known as Shannon’s axioms .

Theorem 9.1 (Shannon 1948). Suppose H satisfies Shannon’s axioms; then there is a
constant K ≥ 0 such that

H(~p) = −K
∑
j

pj log pj.

99



Notice that this implies that H is (up to a choice of Boltzmann constant, which amounts
to a choice of physical units) the thermodynamic entropy, where j ranges over a set of
microstates, as defined by Boltzmann.

Proof. Define
h(n) = H(1/n, . . . , 1/n).

Assume n = k`, say pj = 1/k, qi = 1/`, where ~p, ~q arise from partitions P ,Q respectively.
Then

h(n) = h(k`) = H(P ∨Q) = H(P) +H(Q|P) = h(k) +
1

k

k∑
j=1

h(`) = h(k) + h(`).

Therefore h is a multiplicative-to-additive isomorphism. The only such isomorphism defined
on integers which is increasing is log. In fact, we can use the monotonicity to show that for
any n, if k ≥ `, ∣∣∣∣h(k)

h(2)
− log k

log 2

∣∣∣∣ < 1

n
.

Then if ~p is a rational point in ∆n, one can use this to show that H(~p) = c
∑

j pj log pj.
Continuity extends this to all of ∆n.

Definition 9.2. If ~p is the probability vector corresponding to the partition P of a fixed
measure space, we define the Shannon entropy by

H(P) = H(~p) = −
∑
j

pj log pj.

9.2 Conditional entropy

We now give a more abstract setup for Shannon entropy. Given ξ = {Aj}j a partition of
(X,Σ, µ), let ξ(x) = Aj where x ∈ Aj. Then the join

∨
i ξi is defined by(∨

i

ξi

)
(x) =

⋂
i

ξi(x).

Definition 9.3. The information function I(ξ) of ξ is defined by

I(ξ, x) = − log µ(ξ(x)).

Then entropy satisfies

H(ξ) =

∫
X

I(ξ, x) dµ(x).

Indeed, I(ξ, ·) is constant on any Aj, so it follows that∫
X

I(ξ, x) dµ(x) = −
∑
j

µ(Aj) log µ(Aj).
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Definition 9.4. Let A ⊆ Σ be a sub-σ-algebra. The conditional entropy of ξ with respect
to A is defined by

H(ξ|A) = −
∑
j

∫
X

E(Aj|A) log(E(Aj|A)) dµ.

Here
E(A|A) = E(1A|A)

is the conditional expectation. If A is generated by a partition η,

E(f |A)(x) =
1

µ(η(x))

∫
η(x)

f dµ,

and we write E(f |η) = E(f |A). In particular,

E(A|η)(x) =
µ(A ∩ η(x))

µ(η(x))
.

Unravelling the definitions, H(ξ|η) agrees with the previous definition for conditional entropy
that we gave.

We think of H(ξ|η) as the entropy given that we know everything about η. In particular,
H(ξ|Σ) = 0 (where Σ is the σ-algebra). To see this, note that E(f |Σ) is constant for any
f , so E(A|A) ∈ {0, 1} and hence E(A|A) logE(A|A) = 0. On the other hand, H(ξ) =
H(ξ|{0, X}). More generally if A ⊆ B then

H(ξ) ≥ H(ξ|A) ≥ H(ξ|B) ≥ 0.

If T is measure-preserving then

H(ξ|A) = H(T−1ξ|T−1A).

In particular H(ξ) = H(−1ξ). We also have H(ξ ∨ η) ≤ H(ξ) +H(η).

9.3 The entropy of a group action

Let (X,Σ, µ, T ) be a measure-preserving system.

Lemma 9.5. For any partition ξ, the limit

lim
N→∞

1

N
H

(
N−1∨
j=0

T−jξ

)
= inf

N
H

(
N−1∨
j=0

T−jξ

)
> −∞.

Proof. Let

aN = H

(
N−1∨
j=0

T−jξ

)
.
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Since H(ξ ∨ η) ≤ H(ξ) +H(η), we have

0 ≤ aN+M ≤ aN + aM ,

Therefore
lim
N→∞

aN
N

= inf
N→∞

aN
N

> −∞.

Definition 9.6. Let

h(T, ξ, µ) = lim
N→∞

1

N
H

(
N−1∨
j=0

T−jξ

)
.

Then we may define the entropy of the transformation T by

h(T, µ) = sup
ξ
h(T, ξ, µ),

ξ ranging over all finite partitions of (X,Σ, µ) into measurable sets.

We have h(T, η) ≤ h(T, ξ) +H(η|ξ). Moreover,

h(T, ξ) = lim
N→∞

H(ξ|
∨
i≤N

T−iξ).

Trivially, the σ-algebra generated by T−1
∨
j≤k−1 T

−jξ is contained in the σ-algebra generated

by T−1
∨
j≤k T

−jξ, so if we let

bk = H(ξ|T−1
∨
j≤k

T−jξ)

then the bk form a decreasing sequence, and is bounded from below, so say bk → b. In
particular, bk converges in Cesaro mean to b, so

lim
N→∞

H(
∨
j≤k

T−jξ) = lim
N→∞

H(ξ|T−1
∨
j≤k

T−jξ).

Example 9.7. Take the partition ξ, A0 = {x : x > 0}, A1 = {x : x ≤ 0} of the circle
S1 = {(x, y) : x2 + y2 = 1}. Let T be the irrational rotation, so at each stae

∨
j≤k T

−jξ has
2 more sets than the previous stage. Thus

H

N−1∨
j=0

T−jξ ≤ log 2N

and dividing both sides by N and taking N →∞ we see that

h(T, ξ) = 0.

On the other hand, for any transformation, h(T q) = qh(T ), so if T is a rational rotation
of denominator q, T q = 1 and h(1) = 0. Therefore h(T ) = 0. More generally, this implies
that any periodic transformation has 0 entropy.
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The definition of h(T ) is slightly useless because one cannot easily take a supremum
over partitions. However, Sinai, a student of Kolmogorov, found a less useless equivalent
definition.

Definition 9.8. Let (X,Σ, µ, T ) be a measure-preserving system. A partition ξ is said to
be a one-sided generator of Σ if Σ is the σ-algebra generated by

{A : ∃j(A ∈ T−jξ)}

modulo µ-null sets.

Theorem 9.9 (Sinai-Kolmogorov theorem). If (X,Σ, µ, T ) is a measure-preserving system
and ξ is a one-sided generator of Σ, then h(T, ξ) = h(T ).

Example 9.10. For (S1,Σ, µ, T ) an irrational rotation and ξ the above partition, ξ is a
one-sided generator, so h(T, ξ) = 0.

Theorem 9.11 (martingale convergence theorem). Let {ξn} be a sequence of σ-algebra such
that ξn+1(x) ⊆ ξn(x). Let A the σ-algebra generated by

⋃
n ξn. Then for any event A,

lim
n→∞

E(A|ξn) = E(A|A)

in L2.

We take this as a black box.

Proof of Sinai-Kolmogorov theorem. By the martingale convergence theorem,

h(T, ξ) = lim
n→∞

H(T, ξn)

if ξn refine to ξ. In fact, if ξ is a one-sided generator and we put

ξn =
n∨
j=1

T−jξ,

this means
h(T, ξ) = H(ξ|T−1Σ).

Now take

ξn =
n∨
j=0

T−jξ,

which actually generates all of Σ. Thus for any partition η,

lim
n→∞

H(η|ξn) = H(η|Σ) = 0.

Also
h(T, η) ≤ h(T, ξn) +H(η|ξn)

so taking the limit,
h(T, η) ≤ h(T, ξ)

and taking the supremum of both sides over η we get the claim.
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Corollary 9.12. Suppose that we are in the situation of the Sinai-Kolmogorov theorem but

n∨
j=−n

T jξ

generates Σ, instead of
∨n
j=0 T

−jξ. Then h(T, ξ) = h(T ).

Proof. The proof is the same.

Example 9.13. Kolmogorov formulated the definition of entropy to try to understand a
question of von Neumann: which asked if there was a measure-theoretic sense in which
rolling a die is more complex than flipping a coin. In fact their entropies are not the same,
and so as measure-preserving systems they are not isomorphic.

To see this, take the one-sided Bernoulli shift T on k letters with probability vector ~p. Let
Cσ be the cylinder set of Cantor space kω generated by the string σ. Let ξ be the partition
generated by all Cσs where σ has length 1.

Then

h(T ) = h(T, ξ) = lim
n→∞

1

n
H(T−n+1ξ) = lim

n→∞

1

−n
∑
|σ|=n

pσ0 · · · pσn log pσ0 · · · pσn .

Thus

h(T ) = − lim
n→∞

1

n

n∑
j=1

pσj log pσj .

Thus if we have uniform probability vectors (1/n, . . . , 1/n) of length n then h(T ) = log n.

Example 9.14. The entropy of the cat with eigenvalue λ is log λ. This is a tedious compu-
tation that we omit.

Example 9.15. Let Em(x) = x mod 1 be the circle multiplication map with winding
number m ∈ (0, 1). Let

ξ = {(`/m, `+ 1/m) : `}

be a partition, then
T−jξ = {(`/mj+1, `+ 1/mj+1) : `}

which clearly generates the Borel σ-algebra Σ as n→∞. Then

h(T ) = h(T, ξ) = lim
n→∞

1

n
H(T−n+1ξ) = lim

n→∞

1

n

mn−1∑
`=0

1

mn
= logm.

9.4 Topological entropy

We now relate the entropy defined above (which we now call metric entropy) to topological
entropy defined in the sense of metric spaces (confusingly enough.)

Fix a compact metrizable space X and a continuous transformation T : X → X. Any
compact, second-countable Hausdorff space will do, by the Urysohn metrization theorem.
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Definition 9.16. Given an open cover U of X, we define the covering entropy

H(U) = log min
V

cardV

where V ranges over all finite subcovers of U .

So an extremely complicated cover with lots of barely overlapping parts has very high
entropy.

Definition 9.17. The topological entropy of (X,T ) is

htop(T,U) = lim
n→∞

1

n
H(

n−1∨
j=0

T−jU).

We define
htop(T ) = sup

U
htop(T,U).

The entropy htop(T ) is supposed to measure the exponential growth of the orbits of T .
In fact we can give counting laws for the number of periodic points in terms of htop. But we
will not do that today.

Henceforth let M(T ) be the space of T -invariant Borel probability measures on X.
We proved previously the Krylov-Bogolibabov theorem, which guarantees that M(T ) is
nonempty, convex, and compact, and its extreme points are the ergodic measures of T .

Theorem 9.18. We have
htop(T ) = max

µ∈M(T )
h(µ).

Here the maximum is achieved because M(T ) is compact.

Example 9.19. The Cantor space mω is metrizable as witnessed by

d(x, y) = θminxi 6=yi i

where θ ∈ (0, 1) is fixed. This is actually an ultrametric; i.e. all triangles are isoceles.
The topological entropy of any shift is

htop(T ) = logm,

and this is attained by the cover by open cylinders; any other cover would add inefficiency.
We were interested in Bernoulli probability measures on mω and they had metric entropy
logm if the probability was distributed correctly. So topological and metric entropies agree
here.

Proof that h ≤ htop. Given a Borel partition ξ and a Borel measure µ we will find a cover U
such that

hµ(T, ξ) ≤ htop(T,U) + 1 + log 2

and hence
hµ(T k, ξ) ≤ htop(T

k,U) + 1 + log 2
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which implies

hµ(T, ξ) ≤ htop(T,U) +
1 + log 2

k

and taking the limit as k →∞ the claim follows.
Let ξ = {A1, . . . , Ak} be a Borel partition. Since µ is Borel, there are Cj so that µ(Aj \

Cj) < 1/k. This gives a new partition

η = {C1, . . . , Ck, X \kj=1 Cj

by closed sets, plus an open set, such that

hµ(T, ξ) ≤ hµ(T, η) + 1

Let
Uj = X \

⋃
i 6=j

Ci;

then the Uj form an open cover U of X.
Since ξ was a partition, for any Uj there is an x ∈ Uj such that x /∈ Ui if i 6= j. In

particular, U is a coarse cover in the sense that it has no proper subcover, and

H(U) = log cardU = log k.

Moreover,

card
n−1∨
j=0

T−jη ≤ 2n card
n−1∨
j=0

T−jU .

Here we are using the inequality
(k + 1)n ≤ 2nkn,

the fact that card η = k + 1, that U is coarse, and that cardU = k.
Thus

H(
n−1∨
j=0

T−jη) ≤ expH(
n−1∨
j=0

T−jU) + log 2,

so
hµ(T, ξ) ≤ hµ(T, η) + 1 ≤ htop(U) + 1 + log 2.

For the converse, we need to use the metric properties of X.

Definition 9.20. The Bowen distance of T is given by

dn(x, y) = max
j
d(T j(x), T j(y)).

The Bowen ball is defined by

B(x, ε, n) = {y ∈ X : dn(x, y) < ε}.
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If dn(x, y) < ε, then until time n, the orbits of x and y must remain within ε of each
other. For hyperbolic systems with positive Lyapunov exponent, this requires that either n
be very small, or d(x, y) be very small.

Definition 9.21. We say that A ⊆ X is (n, ε)-spanning if⋃
a∈A

B(a, ε, n) = X.

The spanning number of (n, ε) is

Span(n, ε) = min
A

cardA

where A ranges over (n, ε)-spanning sets.

Such sets must exist since X is compact.

Definition 9.22. The separating number of (n, ε) is

Sep(n, ε) = max
B

cardB

where B ranges over sets such that whenever x, y ∈ B either x = y or dn(x, y) ≥ ε. The
covering number of (n, ε) is

Cov(n, ε) = min
U

cardU

where U is an open cover by sets whose Bowen n-diameter is at most ε.

Then
Cov(n, 2ε) ≤ Span(n, ε) ≤ Sep(n, ε) ≤ Cov(n, ε).

Definition 9.23. The Bowen entropy is defined by

Hε(T ) = lim
n→∞

log Cov(n, ε)

n
.

Lemma 9.24. We have
htop(T ) = sup

ε>0
Hε(T ).

Proof. Fix U . Let δ be the Lebesgue number of U . Then

expH(
n−1∨
j=0

T−jU) ≤ Span(n, δ/2)

so
htop(T ) ≥ sup

ε>0
Hε(T ).

Conversely, if the diameter of every set in U is < ε then

Sep(n, ε) ≤ expH(
n−1∨
j=0

T−jU)

which proves the converse.
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Proof that h> ≤ supµ hµ. For every n choose En ⊂ X to be (n, ε)-separated and maximal.
Let νn be the uniform probability measure on En, which extends to an atomic measure on
X (just put delta functions at each point in En).

Let

µn =
1

n

n−1∑
j=0

T j∗ νn

where S∗ denotes pushforward by S. Here the set Fn =
⋃n−1
j=0 T

jEn is (0, ε)-separated and
µn is a uniform measure on Fn.

Then

Hε(T ) = lim sup
n→∞

log cardEn
n

,

and we pass to a subsequence where this sequence converges. We then pass to a subsequence
again, using compactness of M(T ), to find a limit point µ of the µn.

We then construct a Borel partition ξ = {A0, . . . , Ak−1} of X such that µ(Aj) < ε and
µ(∂Aj) = 0. Then

lim
n→∞

H(µn,
n−1∨
j=0

T−jξ) = H(µ,
n−1∨
j=0

T−jξ),

as a computation will check, and so

lim
n→∞

1

n
log cardEn = lim

n→∞

1

n
H(νn,

n−1∨
j=0

T−jξ) ≤ 1

q
H(µ,

q−1∨
j=0

T−jξ)

and we now take q →∞.
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Part III

Operator algebras
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Chapter 10

Banach algebras

Definition 10.1. A Banach algebra is a Banach space equipped with a bilinear, associative
multiplication such that

||xy|| ≤ ||x||||y||.

If ∗ is a linear involution on A such that (xy)∗ = y∗x∗ and 1∗ = 1 if A is unital. then we say
that A is a ∗-algebra.

Definition 10.2. Let A be a ∗-algebra. If one has the C∗-identity

||x∗x|| = ||x||2,

then we say that A is a C∗-algebra.

For example, if H is a Hilbert space, then B(H) is a C∗-algebra. Later we will learn that
sub-∗-algebras of B(H) are the only examples of C∗-algebras.

Often the norm topology is too strong, so we introduce a new topology which is weaker
on B(H).

Definition 10.3. The strong operator topology is the locally convex topology on B(H) de-
fined by the seminorms

Pξ(T ) = ||Tξ||.

In other words, a sequence converges in the strong operator topology Tn → T iff for each
ξ ∈ H, ||(Tn − T )ξ|| → 0. So the strong operator topology is the topology of pointwise
convergence.

Definition 10.4. A von Neumann algebra A is a sub-∗-algebra of B(H) which is closed in
the strong operator topology.

10.1 The spectrum

Fix a Banach algebra A.

Definition 10.5. Let a ∈ A. The spectrum σ(a) is the set of z ∈ C such that σ(a) − z is
not invertible. The resolvent ρ(a) is the complement of σ(a).
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Lemma 10.6. Let a ∈ A. If ||a|| < 1 then 1− a is invertible with inverse

(1− a)−1 =
∞∑
n=0

an.

Proof. The partial sums converge since ||a|| < 1. Therefore

(1− a)
∞∑
n=0

an = (1− a) lim
n→∞

n∑
k=0

ak = lim
n→∞

n∑
k=0

ak − ak−1 = 1

since the summands telescope.

In particular, if ||1− a|| < 1 then a is invertible.

Definition 10.7. The general linear group of A is GL(A), the group of invertible elements
of A.

By the above lemma, there is a ball B around 1 contained in GL(A). By continuity of
translation, we can carry B to be centered at any point of GL(A). Therefore GL(A) is an
open set.

Proposition 10.8. The function z 7→ (z − a)−1 is holomorphic on ρ(a) ∪∞.

In this case, holomorphy is indicated by local existence of a convergent power series.

Proof. We have

(a− z)−1 =
∞∑
n=0

(a− z0)−n−1(z − z0)n

for each z0 ∈ ρ(a) and z close enough to z0 that the power series converges. To see that the
function is still holomorphic at ∞, notice that

(a− z−1)−1 = z(1− az)−1

which vanishes as z → 0. Replacing z by z−1, we see that the function is bounded close to
infinity, and continuous, so holomorphic there.

We now observe that the usual proofs of Cauchy’s integral formula and its friends such as
Cauchy’s estimate and Liouville’s theorem go through even in case of holomorphic functions
U → A, U ⊆ C open.

We now come to the famous Gelfand-Mazur theorem, which can be thought of as a
“restatement of the fundamental theorem of algebra” for our purposes. For the notation,
recall that the map z 7→ z1 is an embedding of C in any Banach algebra.

Theorem 10.9 (Gelfand-Mazur). If A = GL(A) ∪ 0, then A = C.

Proof. Let a ∈ GL(A) and assume towards contradiction that a /∈ C. Then the resolvent
z 7→ (a−z)−1 is a holomorphic function defined on the Riemann sphere, so constant. Taking
z = ∞, the resolvent is identically 0, but also identically a−1 (taking z = 0). This is a
contradiction.

Notice that this fails over R, as witnessed by C as well as the quaternions H. This is why
we study Banach algebras over C.
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10.2 Ideals

Let I be an ideal of A. It is immediate that the norm-closure I is an ideal. Moreover,
since GL(A) 3 1 is open, if I is a proper ideal, then I does not meet GL(A) and so I does
not contain 1, so · preserves propriety. Therefore maximal ideals are closed. Moreover, for
continuous morphisms, kernels are closed, so we might as well only study closed ideals.

If I is a (left, right) ideal then A/I is a (left, right) module over A, equipped with the
seminorm

||a|| = inf
d∈I
||a− d||.

In case I is closed, this seminorm is actually a norm, and complete since A is complete. So
we end up with a Banach space.

Definition 10.10. A Banach module over A is an A-module M which is a Banach space,
such that

||am||M ≤ ||a||A||m||M .

It is not very hard to check that M = A/I is a Banach module. In fact, for b, c ∈ I, we
have

||am||M ≤ ||(a− c)(m− d)||A ≤ ||a− c||A||m− d||A.
Taking the inf over c, d of both sides, we have

||am||M ≤ ||a||A||m||M .

In case I is two-sided, M is a Banach (A,A)-bimodule, or in other words, a Banach algebra.
In what follows we use Hom(A,B) to mean the K-algebra of morphisms of K-algebras

A→ B over some field K (which is usually C).
If I is a maximal ideal, therefore, A/I is a field, and so A/I = C by the Gelfand-Mazur

theorem. But a maximal ideal gives a epimorphism A → C, and conversely, the kernel of
a such an epimorphism is a maximal ideal. This gives a bijection between the maximal
spectrum of A and Hom(A,C) \ 0, which we call Â.

Lemma 10.11. Let K be a field and A a unital K-algebra. Let ϕ ∈ Hom(A,K). Then if
a ∈ A, ϕ(a) ∈ σ(a).

Proof. We have ϕ(a− ϕ(a)) = 0.

Lemma 10.12. If ϕ : A→ C is a nonzero morphism, then ||ϕ|| ≤ 1.

Proof. ϕ(a) ∈ σ(a) so ||ϕ(a)|| ≤ ||a||.

Therefore Â is contained in the unit ball A′1 of the dual A′. Since nets in Â act con-
tinuously on A, their pointwise convergence preserves operations of A. So Â is closed. In
particular, the Banach-Alaoglu theorem implies that Â is a weakstar compact Hausdorff
space.

Definition 10.13. Let a ∈ A. The Gelfand transform â is the function

â(ϕ) = ϕ(a),

for ϕ ∈ Â.
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Notice that ||â||L∞(Â) ≤ ||a||A and â(Â) ⊆ σA(a). Conversely, let λ ∈ σA(a). Then
a − λ is not invertible, so there is a maximal ideal I ⊇ (a − λ) and an epimorphism ϕ
such that kerϕ = I. Thus λ ∈ â(Â). Therefore Â = σA(a), but the proof of this is highly
nonconstructive.

Example 10.14. Recall that c0(N), the set of x ∈ `∞(N) such that xn → 0 as n → ∞, is
a closed ideal of A = `∞(N). Therefore there is a ϕ such that ϕ(c0(N)) = 0. But, in fact,
Â = βN, where β is the Stone-Cech functor. It follows that it is consistent with ZF without
the axiom of choice that ϕ does not exist.

Definition 10.15. Let a ∈ A. The spectral radius of a is

r(a) = max
λ∈σ(a)

|λ|.

Equivalently, r(a) = ||â||L∞(Â). Therefore we have r(ab) ≤ r(a)r(b).

10.3 The holomorphic functional calculus

As usual, let A be a commutative Banach algebra.

Definition 10.16. Let a ∈ A and let f be a holomorphic function on D(0, ||a||+ ε). Put

f(z) =
∞∑
n=0

αnz
n.

The holomorphic functional calculus is the morphism f 7→ f(a) defined by

f(a) =
∞∑
n=0

αna
n.

The Taylor series of f converges uniformly absolutely on D(0, ||a||), so the partial sums
of f(a) form a Cauchy sequence in A. Therefore f(a) is a well-defined element of A, and
we can think of f as a mapping U → A, where U consists of elements of A that are small
enough. If f is entire, then f lifts to a function A→ A.

Theorem 10.17 (spectral mapping theorem). If λ ∈ σ(a) then f(λ) ∈ σ(f(a)).

Proof. We have

f(a)− f(λ) =
∞∑
n=0

αn(an − λn) =
∞∑
n=0

αn(a− λ)(an−1 + an−2λ+ · · ·+ λn−1)

= (a− λ)b

for some b, if we can show that the partial sums are a Cauchy sequence. In fact

||an−1 + · · ·+ λn−1|| ≤ n||a||n−1

which is the right-hand side of f ′(||a||) (which clearly converges, so partial sums are Cauchy).
Therefore f(a)− f(λ) = (a− λ)b. So if f(a)− f(λ) is invertible, then so is a− λ.
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Chapter 11

C∗-algebras

11.1 Weights

Definition 11.1. Let A be a sub-∗-algebra of B(H). A map ω : A+ → [0,∞] is a weight if
ω is additive and if ω(ta) = tω(a) whenever t ≥ 0.

Fix a weight ω. By mω we mean the span of the set of positive a such that ω(a) <∞, and
by msa

ω we mean the closure of the set of positive a such that ω(a) <∞ under subtraction.
Clearly ω extends uniquely to msa

ω by ω(b − c) = ω(b) − ω(c). So ω extends to a positive
linear functional on mω in the obvious way. On the other hand, if ϕ is any positive linear
functional on B(H), then ϕ is a weight such that mϕ = B(H).

Now we define nω to be the set of a ∈ A such that ω(a∗a) < ∞, which is clearly a
subspace of A.

Lemma 11.2. nω is a left ideal of A.

Proof. If T ≥ 0 then

〈S∗TSξ, ξ〉 = 〈TSξ, Sξ〉 ≤ ||T ||||Sξ||2

= ||T ||〈Sξ, Sξ〉 = ||T ||〈S∗Sξ, ξ〉.

So if d ∈ A and a ∈ nω then

(da)∗da = a∗d∗da ≤ ||d∗d||a∗a = ||d||2a∗a

whence
||ω((da)∗(da)) ≤ ||d||2ω(a∗a) <∞.

Definition 11.3. If ω(a∗a) = ω(aa∗) then ω is tracial.

Clearly if ω is tracial then nω is a two-sided ideal. For example, if ω is actually the trace,

ω(x) =
∑
j

〈x∗xej, ej〉
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for {ej}j an orthonormal basis of the separable Hilbert space H, then ω is tracial and nω is
just the space of trace-class operators and ω is tracial.

Recall the polarization identity:

4b∗a =
3∑

k=0

ik(a+ ikb)∗(a+ ikb).

From this we are justified in defining, on nω,

〈a, b〉ω = ω(b∗a).

This would be an inner product if Nω = {a ∈ A : ω(a∗a) = 0} were trivial. Clearly Nω is a
subspace, so we can take the completion of nω/Nω and recover a Hilbert space.

11.2 The GNS construction

Definition 11.4. The completion of nω/Nω is denoted L2(A, ω).

If b ∈ nω, then

〈ab, ab〉ω = ω(b∗a∗ab) ≤ ||a∗a||ω(b∗b) = ||a||2||b||2ω.

So if a ∈ A then ξ 7→ aξ is a well-defined, bounded operator on nω/Nω and so extends to
L2(ω).

Definition 11.5. A ∗-representation is a morphism of ∗-algebras (i.e. a morphism of alge-
bras preserving ∗) into B(H).

If a ∈ A, b, c ∈ nω, then

〈ab, c〉ω = ω(c∗ab) = ω((a∗c)∗b) = 〈b, a∗c〉ω,

which descends to L2(ω). So we can define a ∗-representation

L : A → B(L2(ω))

a 7→ (ξ 7→ aξ).

Definition 11.6. The map L is called the GNS construction (for Gelfand-Neimark-Segal)
of A, or the left regular representation of A.

The GNS construction allows us to assume that A is actually acting on a Hilbert space,
namely L2(ω). So a C∗-algebra is always an operator algebra.

We can also define a right regular representation,

R : A → B(L2(ω))

a 7→ (ξ 7→ ξa).

Notice that R is an antihomomorphism.
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Lemma 11.7. Assume that for each positive a ∈ A,
√
a exists. Then mω ⊆ nω, and in

particular mω is a sub-∗-algebra of A.

Proof. If a ∈ mω is positive,

ω(
√
a

2
) = ω(

√
a
∗√
a) = ω(a)

so
√
a ∈ nω. Since nω is a left ideal, a ∈ nω.

Example 11.8. Let X be a measure space and K ∈ L2(X×X). Then the integral operator
TK : L2(X) → L2(X) has ||TK ||B2 = ||K||L2 . Indeed, if {ξn}n is a Hilbert basis for L2(X)
then ∑

n

||Tkξn||2 =
∑
m,n

|〈Tkξm, ξn〉|2 =
∑
m,n

∣∣∣∣∫∫
X×X

K(x, y)ξn(y)ξm(x) dx dy

∣∣∣∣2
=
∑
m,n

|〈K, ξm ⊗ ξn〉|2 = ||K||L2

since the ξm ⊗ ξn form a Hilbert basis for L2(X ×X) = L2(X)⊗ L2(X).

Example 11.9. If A = C([0, 1]) and

ω(f) =

∫ 1

0

f(t) dt

then ω is a tracial weight on A such that nω = A. But of course nω is a Banach space when
given the B2 = L2 norm. Its completion is L2([0, 1]).

Proposition 11.10. Let ω be a tracial weight and A be a sub-∗-algebra of B0(H). If b ≥ 0
and b ∈ mω, and a ∈ B(H) then

|ω(ab)| ≤ ||a||op|ω(b)|.

Proof. We have

|ω(ab)|2 = |ω(a
√
b
√
b)|2 = |ω(

√
ba
√
b)|2 = |〈a

√
b,
√
b〉|2

≤ 〈a
√
b, a
√
b〉〈
√
b,
√
b〉 = ω(

√
ba∗a
√
b)ω(b) ≤ ||a||2ω(b)2.

We summarize the GNS construction, and the Gelfand transform, in the following the-
orem. We define C∞(X) to be a subspace of the space of continuous functions C(X). If
X is compact we define C∞(X) = C(X). Otherwise, we let C∞(X) be those functions in
C(X) which vanish at the point at infinity given by the one-point compactification of X.
For example, C∞(R) consists of functions on R which go to zero as |x| → ∞.

Theorem 11.11 (Gelfand-Naimark). For every C∗-algebraA, there is a faithful ∗-representation
of A. Moreover, if A is commutative, then there is a locally compact Hausdorff space X such
that A = C∞(X) (which gives a representation of A on L2(X). If A is also unital, then X
is compact and is naturally in bijection with the maximal ideal space of A. Moreover, the
map A 7→ X is a contravariant equivalence of categories between compact Hausdorff spaces
and commutative, unital C∗-algebras.
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11.3 The Bp spaces

Definition 11.12. If T ∈ B2(H) then T is called a Hilbert-Schmidt operator .

Example 11.13. Let H be the separable Hilbert space. Take A = B0(H) and ω to be the
trace. Since B0(H) has square roots and ω is tracial, we can apply the above result to prove
that nω and mω are two-sided ideals and hence sub-∗-algebras.

If we write |T | =
√
T

2
, and let Bp(H) be the space of T ∈ B0(H) such that ω(|T |p) <∞,

then B1(H) = mω(H) and B2(H) = nω(H).
We think of Bp(H) as the noncommutative analogue of `p.

Let’s check that that example actually makes sense.

Theorem 11.14. B2(H) is a Banach space.

Proof. First observe that ||T ||op ≤ ||T ||2. To do this, compute the trace of T by using an
orthonormal basis containing a ξ such that ||Tξ|| ≥ ||T ||op − ε. As this is possible for any
ε > 0 the claim holds.

Now assume that {Tn}n is 2-Cauchy, so in particular op-Cauchy. So there is a T ∈ B0(H)
such that Tn →op T .

If P is a finite-rank projection then (T − Tn)P is a finite-rank operator, hence ∈ B2(H).
So

||(T − Tn)P ||22 = trP (T − Tn)∗(T − Tn)P = tr(T − Tn)P (T − Tn)∗ = lim
k→∞

tr(Tk − Tn)P (Tk − Tn)∗

≤ lim sup
k→∞

(Tk − Tn)(Tk − Tn)∗ = lim sup
k→∞

||Tk − Tn||22.

Let Cn = lim supk→∞ ||Tk − Tn||22. Then Cn → 0 and

||(T − Tn)P ||22 ≤ Cn

regardless of the choice of n and P . Since T −Tn is a compact operator, we can approximate
it arbitrarily well by (T − Tn)P by choosing P . So ||T − Tn||22 → 0.

Recall the polar decomposition of T ∈ B0(H) is the factorization

T = V |T |

where |T | =
√
T

2
and V is a partial isometry , i.e. an isometry on its cokernel.

Lemma 11.15. If T ∈ B1(H) and A ∈ B(H) then

|tr(AT )| ≤ ||A||optr|T |.

Proof. Write T = V |T |. Then

|tr(AT )| = |tr(AV |T |)| ≤ ||AV ||optr|T | ≤ ||A||optr|T |.
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Lemma 11.16. || · ||1 = tr| · | is a norm on B1(H).

Proof. Let S, T ∈ B1(H) and S + T = W |S + T |. Then

tr|S + T | = trW ∗(S + T ) = tr(W ∗S) + tr(W ∗T ) ≤ |trW ∗S|+ |trW ∗T | ≤ tr|S|+ tr|T |.

Theorem 11.17. B1(H) is a Banach algebra.

Proof. Since ||T ||op ≤ ||T ||1 the proof is basically the same as for Hilbert-Schmidt operators.

Theorem 11.18. B1(H)∗ = B(H).

Proof. If A ∈ B(H), let ΨA(T ) = tr(AT ). Then

||ΨA(T )|| ≤ ||A||||T ||1.

So A 7→ ΨA is an isometry and so B(H) ⊆ B1(H)∗.
Let Ψ ∈ B1(H)∗ and ξ, η ∈ H. Define a bounded operator 〈ξ, η〉O by

〈ξ, η〉Oζ = ξ〈η, ζ〉.

(So 〈·, ·〉O is an operator-valued pseudo-inner product (the pseudo- here means that it could
be zero). Define a semilinear form

BΨ(xi, η) = Ψ〈ξ, η〉O.

So |BΨ(ξ, η)| ≤ ||Ψ||||ξ||||η||. Therefore by the Riesz representation theorem, there is an
operator A such that BΨ(ξ, η) = 〈Aξ, η〉. Therefore ||A|| = ||Ψ|| and Ψ = ΨA. So B1(H)∗ ⊆
B(H).

11.4 Representation theory of groups

Let G be a group with a good topology (so G admits a Haar measure).

Definition 11.19. A unitary representation of G is a continuous morphism of groups G→
U(H). It is irreducible if the only G-invariant subspaces are trivial.

For π a unitary representation, we have π(x)∗ = π(x)−1.

Example 11.20. Let G = SL(3,Z). Then the “obvious” map G→ SL(3,C) is not a unitary
representation. In fact G has very few finite-dimensional unitary representations, because G
is not compact.

Definition 11.21. The left regular representation of G is the map G→ U(L2(G)) given by

π(x)(ξ)(y) = ξ(x−1y).
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It is natural to want to study the subalgebra of B(H) generated by π(G) for π a unitary
representation. This will be given by linear combinations of the π(x)s as x ∈ G, which we
identify with the space Cc(G) of compactly supported continuous functions on G. Namely,
for f ∈ G we define

π(f) =

∫
G

f(x)π(x) dx.

Definition 11.22. The norm-closure of π(Cc(G)) is the reduced C∗-algebra of G.

Now an easy computation shows

π(f)π(g) = π(f ∗ g)

and of course π(f)∗ = π(f ∗) where we define f ∗(x) = f(x−1). Finally, we observe that

||π(f)|| ≤ ||f ||L1(G)

so π is a ∗-Banach algebra morphism which extends to a map

π : L1(G)→ B(L2(G)).

This leads to the abstract theory of Fourier transform.

11.5 Compact operators

Let B0(H) denote the algebra of compact operators in H. This is a closed ideal of H, hence
a C∗ algebra (proof: it is the closure of the ideal Bf (H) of finite rank operators in H.) It
will be one of our main examples of a noncommutative, nonunital C∗ algebra.

We now study the representation theory of B0(H).
Like any C∗ algebra, B0(H) has a normalized approximate identity, sequential if H is

separable. Decompose H by transfinite recursion as

H =
⊕
α<κ

C

where κ is some cardinal (κ = ℵ0 if H separable) and the biproduct is in the category of
Hilbert spaces. For λ < κ, let Hλ =

⊕
α<λHλ so H is the injective limit of the Hλ; then

let eλ be the natural projection H → Hλ. The eλ form a net with respect to the natural
ordering on κ and are obviously an approximate identity.

Recall that if we fix a representation π : A → B(H), we can view H as a module over
A by defining aξ = π(a)(ξ). Recall also that a representation is said to be nondegenerate if
HA is dense in A.

In fact, any representation of B0(H) is faithful. Since representations are continuous,
and B0(H) has no closed ideals (since Bf (H) contains all proper ideals of B0(H), and is
dense in H), any representation of B0(H) is faithful.

There is a natural ∗-representation B0(H) → B(H) given by the inclusion map. Since
eλξ → ξ, this representation is nondegenerate. In some sense this is the only such represen-
tation.
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Lemma 11.23. A nondegenerate ∗-representation of B0(H) is isomorphic to a direct sum
to copies of the representation B0(H) → B(H). In particular, the only irreducible such
representation is the representation B0(H)→ B(H).

Proof. Let 〈ξ, η〉0 be the B0(H)-valued inner product

〈ξ, η〉0ζ = ξ〈η, ζ〉.

In fact such an inner product has values in rank-1 operators since ξ〈η, ζ〉 lies in the span of
ξ.

For T ∈ B(H), T 〈ξ, η〉0ζ = (Tξ)〈η, ζ〉 so T 〈ξ, η〉0 = 〈Tξ, η〉0, and 〈ξ, η〉0T = 〈ξ, T ∗η〉0.
Let π : B0(H)→ B(V ) be a nondegenerate ∗-representation, ξ ∈ H a unit vector. Then

〈ξ, ξ〉0 is a rank-1 projection. Since π is faithful, π(〈ξ, ξ〉0) is a nonzero projection. Let v
be a unit vector of 〈ξ, ξ〉0(V ) and define Q : H → V by Qη = 〈η, ξ〉0v. Then by a tedious
computation, Q is an isometry.

We now show that Q commutes the representations. Let T = 〈ω, ζ〉0. Any operator in
B0(H) can be written as an infinite linear combination of rank-1 operators so it suffices to
show that QT = TQ. In fact,

Q(Tη) = 〈Tη, ζ〉0v = TQ(η).

Also, Q(H)⊥ is π-invariant, so we repeat the argument on Q(H)⊥ to see that we have

V = Q(H)⊕Q(H)⊥

as B0(H)-modules. Now run Zorn’s lemma to keep decomposing Q(H)⊥ until we hit an
irreducible representation.

This is a very remarkable property of B0(H). To see why, we need something stronger
than ZFC.

Definition 11.24. A ♦-sequence is a net of sets α 7→ Aα, for α < ℵ1, such that for any
A ⊆ ℵ1,

Â = {α < ℵ1 : A ∩ α = Aα}

is stationary in ℵ1.

In other words, for every closed and unbounded (“club”) set C ⊆ ℵ1, C ∩ Â is nonempty.
The existence of a ♦-sequence implies that V = L, in particular implying GCH.

Naimark conjectured that if A was a C∗-algebra with only one irreducible representation,
then A = B0(H). This is true if A is separable.

Theorem 11.25 (Ackemann-Weaver). If there is a ♦-sequence, then there is a C∗-algebra
A which has only one irreducible representation such that A 6= B0(H).

In this lemma, you should read A = B(H) and I = B0(H).

Lemma 11.26. Let A be a ∗-normed algebra and I a ∗-ideal of A with normalized approx-
imate unit. Then every nondegenerate ∗-representation of I extends uniquely to A.
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Proof. Let π : I → B(H) be such a representation. Define

π̃(a)
∑
α

π(dα)ξα =
∑
α

π(adα)ξα

where the ξα are a Hilbert basis of H. Then π̃ is a well-defined function since if
∑

α π(dα)ξα =
0, then ∑

α

π(adα)ξα = lim
λ

∑
α

π(aeλdα)ξα = lim
λ
π(aeλ)

∑
α

π(dα)ξα = 0

since the eλ are a normalized approximate unit. This is unique because

π̃(a)π(d)ξ = π(ad)ξ

and the π(ad)ξ are dense in H.

Lemma 11.27. Let A, I be as above and let π be an irreducible representation of A. Then
either I ⊆ kerπ or π is an irreducible representation of I.

Proof. Assume I is not contained in kerπ. Then IH is nonzero and A-invariant. Since π is
irreducible, IH = H. Therefore π is a nondegenerate representation of I.

We have eλξ → ξ for any ξ since π is nondegenerate. Let K ⊆ H be nondegenerate
and nonzero. Using eλ, IK = K so IK is A-invariant. Therefore since π is irreducible,
K = H.

Lemma 11.28. Let A, I be as above. Let π : A→ B(H) and ρ : A→ B(K) be irreducible
representations. If π ∼= ρ as representations of I, then π ∼= ρ as representations of A.

Proof. Let U : H → K be an isomorphism of I-modules. For d ∈ I,

U(π(a)π(d)ξ) = U(π(ad)ξ) = ρ(ad)Uξ = ρ(a)U(π(d)ξ).

So Uπ = ρU .

Theorem 11.29 (Burnside). Assume H 6= C. Let A ⊆ B0(H) be a C∗-algebra. If A acts
on H irreducibly, then A = B0(H).

Proof. By assumption on H, A 6= 0. Let T 6= 0. Then T ∗T ∈ A is nonzero, so we can assume
without loss of generality that T is self-adjoint. Moreover, C∗(T, 1) = C(σ(T )) acts on H as
an abelian monoid.

Let λ ∈ C(σ(T )). Taking bump functions centered on λ we can find a sequence of ξn ∈ H
such that (T − λ)ξn → 0. Since T is comapct, T sends the unit ball of H to a precompact
set. So the Tξn have a weak limit η. Thus Tη = λη. Therefore T has an eigenvector for λ.
So the only limit point of σ(T ) is 0, because the other eigenvectors are all orthogonal.

Let P be a projection of minimal rank in A. We claim that P is a rank-1 projection.
In fact, PTP is a self-adjoint operator on the finite-dimensional space PH, so has spectral
projections in A whose rank is the same as that of P by minimality. Thus there is a unique
such spectral projection; i.e. there is an s ∈ R such that PTP = sP . Moreover, if ξ, η ∈ PH
are orthonormal, R ∈ A, then 〈Rξ, η〉 = s〈ξ, η〉 = 0. Therefore 〈Aξ, η〉 = 0, yet A acts
irreducibly, which is a contradiction. Therefore P is a rank-1 projection.

Now R, S ∈ A implies that RPS is a rank-1 projection. Thus APAH = H. So APA
is the set of rank-1 operators. Any compact operator can be written as an infinite linear
combination of those.
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Corollary 11.30. Let A be a C∗-algebra and π : A→ B(H) an irreducible representation.
If π(A) contains a nonzero compact operator then π(A) contains B0(H).

Proof. Let I = π(A) ∩ B0(H). Then I acts irreducibly on H so by Burnside’s theorem,
π(I) = B0(H). But π takes I/ kerπ to B0(H) isometrically (since it is injective), so π(I) is
closed since I is complete. Thus π(I) = B0(H).

We write Â to denote the set of all isomorphism classes of irreducible representations of
A.

Definition 11.31. Let π : A→ B(H) range over Â. We say that A is liminal or CCR if for
every π, π(A) = B0(H). We say A is postliminal or GCR if for every π, B0(H) ∩ π(A) 6= 0.
We say A is antiliminal or NCR if for every π, B0(H) ∩ π(A) = 0.

If A is a von Neumann algebra, we say that A is type-I if A is postliminal. We say that
A is non-type-I if A is not postliminal.

We will prove later that if G is a semisimple Lie group or a nilpotent Lie group, then
C∗(G) (by which we really mean C∗(L1(G))) is CCR. But if G is solvable we cannot even
prove that C∗(G) is GCR.

Example 11.32. Let α be the Lie action of R on C2 by α(t)(z, w) = (e2πitz, e2πiµtw) where
µ is irrational. Then we take the outer semidirect product G = C2×αR. Then C∗(G) is not
GCR.

Theorem 11.33. Let π : A → B(H) be an irreducible representation and let I = kerπ.
If π(A) ∩ B0(H) 6= 0 then for every irreducible representation ρ of A such that ker ρ = I,
ρ ∼= π.

Proof. Let J = π−1(B0(H)), so I ⊆ J . Then π is an irreducible representation of J with
kernel I, so drops to an irreducible representation of J/I. By Burnside’s theorem, π is an
isomorphism J/I → B0(H).

But by assumption on ρ, ρ is an isomorphism J/I ∼= B0(H). Since there can be only one
irreducible representation of B0(H), ρ ∼= π as representations of J . But ρ, π extend uniquely
to A, so ρ ∼= π as representations of A.

Corollary 11.34. If A is a GCR algebra, then every representation of A is uniquely deter-
mined by its kernel.

Definition 11.35. A primitive ideal is a kernel of some irreducible representation.

So if A is GCR, then there is a bijection between Â and the set of primitive ideals of A.
On the other hand, NCR algebras are very bad:

Theorem 11.36. Let π : A → B(H) be an irreducible representation and assume π(A) ∩
B0(H) = 0. Then there are uncountably many irreducible representations ρ of A such that
ker ρ = ker π.

In fact Mackey showed that in some sense the set of representations sharing a kernel with
π is “unclassifiable.”
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Example 11.37. Let A be a unital, infinite-dimensional, simple C∗-algebra and π : A →
B(H) an irreducible representation. SinceA is simple, it has no proper ideals; yet π−1(B0(H))
is an ideal. If π−1(B0(H)) = A then A is not unital, a contradiction. So π(A) ∩B0(H) = 0.
Therefore A is an NCR algebra.

Theorem 11.38. Every primitive ideal is prime.

Proof. Let I be a primitive ideal of A, say I = ker π. Let J1, J2 be ideals of A such that
J1J2 ⊆ I. If J1 ⊆ I there is nothing to prove. Otherwise, π(J1) 6= 0, so π(J1)H 6= 0
is π-invariant. By irreducibility, π(J1)H = H, so π(J2)H = π(J2)π(J1)H = π(J1J2)H ⊆
π(I)H = 0. So J2 ⊆ I.

Recall that the prime spectrum SpecR of a ring R is defined by the Zariski (or Jacobson,
or hull-kernel) topology is given by declaring that S ⊂ SpecR is closed if there is an ideal I
such that S = {J ∈ SpecR : J ⊆ I}. By the above theorem, if R is a C∗-algebra, then the
Zariski topology drops to a topology on the set of primitive ideals PrimR. This topology
is far from Hausdorff in general, but is at least locally compact. If R is a commutative
C∗-algebra, then PrimR is naturally the maximal ideal space of R (since every primitive
ideal is maximal in that case) and this just generalizes the Gelfand-Naimark theorem in that
case.

In fact, if A is separable, then every closed prime ideal of A is primitive. This follows from
applying the Baire category theorem to PrimA. This does not work in general: Weaver used
transfinite induction to find a counterexample if A is not separable. (It may be undecidable
whether there is a counterexample in ZF alone.)
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Chapter 12

Generators and relations

We now study C∗-algebras determined by generators and relations.

12.1 Construction of maximally free algebras

Let {ai} be a set of generators, and take the free ∗-algebra F over C generated by the ai.
This is the set of noncommutative polynomials in the ai and a∗i (where a∗i is just a formal
symbol for now).

Given a set R of relations, we can view R as noncommutative polynomial equations. So
we take the ideal (R,R∗), which is the ∗-ideal generated by R. Then we let A = F/(R,R∗),
which is a ∗-algebra still. We consider the set Π of all ∗-representations of A. Then for a ∈ A
we set

||a|| = sup
π∈Π
||π(a)||.

A priori we have ||a|| =∞. This happens if F is the free ∗-algebra on one generator. So we
need R to force ||ai|| <∞ for each generator ai.

Assume that R forces ||ai|| < ∞ (for example, if the generators are sent to unitary
operators). Since the image of every π ∈ Π is a C∗-algebra, || · || is a seminorm satisfying the
C∗-identity ||a∗a|| = ||a||2. So we take the completion with respect to || · ||; i.e. we annihilate
the kernel of the seminorm and then complete. What is left over is a C∗-algebra.

Just because a set of generators and relations gives a valid C∗-algebra of A does not
mean that we necessarily can find a natural, faithful representation. Moreover, even if we
have a natural, faithful representation of A, the norm arising from that representation is not
necessarily the norm given by taking the supremum over Π.

Example 12.1. Let G be a discrete group, which we view as a set of generators. We im-
pose relations corresponding to each true relation in G. (This can be viewed as taking the
first-order theory of G.) We also take the relations x∗ = x−1 for x ∈ G so the resulting max-
imally free operator algebra A naturally represents the elements of G as unitary operators.
Therefore for x ∈ G we have ||x|| = 1; so A is actually a C∗-algebra. In fact, it is easy to see
that A is the completion of Cc(G), i.e. finitely supported functions on G. In other words,
A = C∗r (G) is the reduced group C∗-algebra.
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Moreover, A acts on `2(G) by left translation, sinceG does. This representation is faithful,
so A is unusual amongst the free C∗-algebras in that it has a natural faithful representation.
In general, the norm in `2(G) does not always agree with the norm on A; this happens if
and only if G is an amenable group. (It turns out that since G is discrete, G is amenable if
and only if there is a finitely additive, left-invariant probability measure on G. For example,
this fails if G is the free group on n letters, n ≥ 2.)

12.2 Tensor products of C∗-algebras

An important application of generators and relations is the ability to define the tensor
product of C∗-algebras.

Definition 12.2. Let A,B be unital C∗-algebras. Their tensor product A ⊗ B is the C∗-
algebra with generators A ∪ B and relations consisting of all true relations in A, all true
relations in B,

∀a ∈ A ∀b ∈ B ab = ba,

and ∀x (1A1B)x = x.

The relation ab = ba is the “tensor product relation”, so we can reasonably think of ab
as a⊗ b. Similarly, the relation (1A1B)x = x requires that 1A⊗B = 1A1B, so A⊗B is unital.
We have embeddings A→ A⊗B, B → A⊗B given by a 7→ a⊗ 1B and b 7→ 1A ⊗ b.

To see that this is actually well-defined (i.e. has finite norm), let π be a ∗-representation
of A⊗B. Then π restricts to a ∗-representation of A (and similarly to B) along the mapping
A→ A⊗B. Therefore for any a ∈ A,

||π(a⊗ 1B)|| ≤ ||a||.

Similarly for B; so there is an upper bound on the norm of any generator. Therefore A⊗B
is a C∗-algebra.

Example 12.3. Let X, Y be compact Hausdorff spaces. Then we have C(X×Y ) = C(X)⊗
C(Y ).

We now consider the representation theory of tensor products.

Definition 12.4. Let π : A → B(H) and ρ : B → B(K) be representations. The tensor
product of representations π ⊗ ρ : A⊗B → B(H ⊗K) is defined by

π ⊗ ρ(a⊗ b)(ξ ⊗ η) = π(a)ξ ⊗ ρ(b)η.

The norm induced by the tensor product of representations is also a C∗-norm, so we have
two reasonable C∗-norms on A⊗B. If we use the norm obtained by taking the supremum over
representations, we emphasize this by writing A⊗max B. If we are using the norm obtained
by the tensor product of Gelfand-Naimark-Segal representations, we write A⊗min B.
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Example 12.5 (Takesaki, 1959). Let G be the free group on 2 generators, λ its left regular
representation, ρ its right regular representation. Consider the tensor product C∗r (G) ⊗
C∗r (G), represented by λ ⊗ ρ. Then the two norms given above are the “minimum” (i.e.
tensor product λ⊗ ρ) and “maximum” norms respectively, but there are many intermediate
norms between the two that have been studied in recent years. In particular, the tensor
product does not have a unique norm.

Definition 12.6. A nuclear C∗-algebra A is a C∗-algebra such that for every C∗-algebra B,
the norm on A⊗B is unique.

Example 12.7. B0(H) is nuclear, since it uniquely embeds in B(H). It follows that any
GCR algebra is nuclear. But if G is a discrete group, then C∗(G) is nuclear if and only if G
is amenable. Thus the free group on 2 generators is not nuclear.

Definition 12.8. An exact C∗-algebra A is a C∗-algebra such that A ⊗min · is an exact
functor.

Note that A⊗max · is an exact functor for any A.
We now treat the coproduct in the category of C∗-algebras.

Definition 12.9. The free product of C∗-algebras A,B, A ∗B, is defined to have generators
A ∪B and relations induced from A,B as well as 1A = 1B.

The norm is defined as in the case of tensor products. A representation of A ∗B consists
of a pair of representations of A and B on the same Hilbert space, by the universal property.
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Chapter 13

Representation theory of locally
compact groups

13.1 Noncommutative dynamical systems

Definition 13.1. A noncommutative dynamical system is an action of a group G on a
C∗-algebra A.

Often it is convenient that a noncommutative dynamical system is taking place inside a
Hilbert space H.

Definition 13.2. Let α : G → Aut(A) be a noncommutative dynamical system. Let
π : A→ B(H) a ∗-representation, U : G→ U(H) a unitary representation. If the dynamical
system satisfies the covariance relation

α(x)a = Uxπ(a)U∗x ,

then (π, U) is called a covariant representation of α.

we now define ∗-operations on Cc(G→ A). If f, g ∈ Cc(G→ A) then(∑
x

f(x)x

)(∑
y

g(y)y

)
=
∑
x,y

f(x)xg(y)y

=
∑
x,y

f(x)α(x)(g(y))xy

=
∑
x,y

f(x)α(x)(g(x−1y))y.

This motivates the following definition.

Definition 13.3. If α is a noncommutative dynamical system, then for f, g ∈ Cc(G→ A),
we define

(f ∗ g)(y) =
∑
x

f(x)α(x)(g(x−1y)),

the twisted convolution of f, g by α.
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Definition 13.4. If α is a noncommutative dynamical system, f ∈ Cc(G→ A), then

f ∗(x) = α(x)(f(x−1)∗),

the twisted involution of f by α.

With twisted convolution and involution, Cc(G→ A) is a ∗-algebra. Moreover, we have
an injective mapping A→ C(G→ A) give by a 7→ aδ1, 1 the identity of the group. We also
have an injective mapping G → C(G → M(A)) with x 7→ 1x (here 1 is the identity of the
noncommutative Stone-Cech compactification M(A); if A is unital then A = M(A).

Definition 13.5. Given any covariant representation (π, U) of α : G→ Aut(A) we call the
integrated form σ, a ∗-representation σ : Cc(G,A)→ B(H) by

σ(f) =
∑
x

π(f(x))Ux.

The set of all possible integrated forms is bounded. Therefore we can make the following
definition by generators and relations:

Definition 13.6. The C∗-algebra generated by Cc(G,A) and A is called C∗(G,A) or AoαG.
It is called the crossed product C∗-algebra or the covariance C∗-algebra.

The generators of AoαG will consist of all elements of G and of A, the relations will be
all relations in G and A as well as

xa = α(x)ax

since G acts on A by convolution (since α has a covariant representation).
To see that that there are, in fact, covariant representations, we give an explicit one.

Definition 13.7. Let ρ : A→ B(H0) be a ∗-representation, and define

H = `2(G→ H0) = `2(G)⊗H0.

Now define a unitary representation of G on H by (for x, y ∈ G, ξ ∈ H)

U(x)(ξ)(y) = ξ(x−1y).

We then define π : A→ B(H) by

π(a)(ξ)(x) = ρ(α(x−1)(a))(ξ)(x),

which is a ∗-representation. It is called the induced covariant representation of α by ρ.

Lemma 13.8. The induced covariant representation is covariant.

Proof. We have

U(x)(π(a))(ξ)(y) = (π(a)(ξ))(x−1y) = ρ(α((x−1y)−1))(U(x)(ξ))(y)

= ρ(α(y−1x)(a)) = ρ(α(y−1)(α(x))(a))(U(x)(ξ))(y)

= (π(α(x)(a))U(x)(ξ))(y).
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So
U(x)(π(a))(ξ) = π(α(x)(a)U(x))(ξ)

which implies
U(x)(π(a)) = π(α(x)(a))U(x)

so that (π, U) is a covariant representation.

If K is a subgroup of G, (ρ, V ) a covariant representation of α|K on H0, then the induced
representation of (ρ, V ) is a covariant representation of α. Here H = `2(G/H)⊗H0.

Definition 13.9. The reduced group C∗-algebra of the representation α, C∗r (A,G, α), is the
C∗-algebra generated by Cc(G→ A) with ||f || defined to be the supremum of ||σ(f)|| for σ
ranging over the integrated forms of induced covariant representations.

Definition 13.10. If C∗(A,G, α) = C∗r (A,G, α), then α is said to be an amenable action.

If α is trivial, then
C∗(A,G, α) = A⊗ C∗(G)

so the theory of covariant representations includes the theory of unitary representations.
Though all the above theory was developed for discrete groups, it works fine for locally

compact groups, as we now describe in detail. In fact, if G is a locally compact group, then
we consider the left Haar measure µ, which is a Radon measure that is unique up to positive
scalars (but need not be two-sided). Moreover, if y ∈ G, if we let

ν(f) =

∫
G

f(xy) dµ(x)

then ν is a left Haar measure, so we can find a ∆(y) such that ν = ∆(y)µ.

Definition 13.11. The function ∆ : G→ R+ is called the modular function of G.

The modular function is a continuous morphism of groups.

Definition 13.12. A group is unimodular if ∆ = 1.

For unimodular groups, the left and right Haar measures coincide. So any abelian group is
unimodular. Moreover, R+ has no compact subgroups, so any compact group is unimodular.
Semisimple Lie groups and nilpotent Lie groups can also be shown to be unimodular. Solvable
Lie groups are often not unimodular.

Example 13.13. Let (M,ω) be a Poisson manifold (e.g. ω is a symplectic form on M).
We let h be a semiclassical parameter for a family of noncommutative ring structures on
C∞c (M → C), so we can view (M,ω, h) as a family of operator algebras. There is a notion
of modular function for M .

The trouble with locally compact groups is that the maps G → U(H) are typically
not norm-continuous. In fact, this is already apparent for the left regular representation
R → U(L2(R)), where we take a function with compact support and translate it by far
outside its support.
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Definition 13.14. An action α of G on a Banach space A is strongly continuous if for every
a ∈ A, x 7→ α(x)(a) is continuous.

This is the correct definition of the continuity of a representation of a locally compact
group.

Definition 13.15. If G is a locally compact group, a C∗-dynamical system for G is a strongly
continuous action of G on a C∗-algebra. A covariant representation of the C∗-dynamical
system is one which is also strongly continuous.

The integrated form of a covariant representation (π, U) of a C∗-dynamical system is
given by

σf (ξ) =

∫
G

π(f(x))U(x)(ξ) dx.

Using Bochner integration, we can define the integrated form for any f ∈ Cc(G→ A). Now

||σf (ξ)|| ≤
∫
G

||f(x)|| dx ||ξ||

so it follows that ||σf || ≤ ||f ||L1(G). So σ extends to L1(G → A). Though the elements of
Cc(G→ A) are functions, it makes sense to think of them as Radon-Nikodym derivatives of
A-valued measures on G with respect to Haar measure. As in the theory of discrete groups,
σfσg = σf∗αg where the twisted convolution is defined by

f ∗α g(x) =

∫
G

f(y)α(y)(g(y−1x))(y) dy.

Therefore ||f ∗α g||L1(G) ≤ ||f ||L1(G)||g||L1(G).
Another complication comes in the form of groups that are not unimodular. This happens

because

σ∗f =

∫
G

π(f(x))Ux dx =

∫
G

U∗xπ(f(x))∗ dx

=

∫
G

Ux−1π(f(x))∗ dx = ∆(x)

∫
G

Uxπ(f(x−1)∗) dx.

Therefore we must define the twisted involution

f ∗(x) = ∆(x)α(x)(f(x−1)∗)

if we want σ∗f = σf∗ .

Example 13.16. Let G be the group of affine transformations of R (the “ax + b group”).
This group is far from unimodular, and its action on R is important in the theory of wavelets.
So the modular function is important in signal processing.

We write C∗(A,G, α) = AoαG for the completion of Cc(G→ A) with respect to the norm
given by taking the supremum over all integrated forms. The reduced algebra Aor

αG is given
by taking the supremum over all integrated forms arising from covariant representations.
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Now L1(G) does not have an identity since it does not have a delta function if G is
not discrete. But we could always take an approximate delta function. Specifically, we
let Λ denote the filter of all open sets containing the identity 1 of G. (A filter-base also
suffices.) Then given a neighborhood λ of 1, let fλ ∈ Cc(G → R+) be supported in λ with
||fλ||L1(G) = 1. We view fλ as a probability measure carried by λ. Obviously the (fλ)λ are
an approximate delta function in L1(G).

Let α be an action of G on a C∗-algebra A with approximate identity (eµ)µ. We then
define

hµ,λ(x) = fλ(x)eµ

to obtain an approximate identity for L1(G→ A).

Theorem 13.17. There is a natural bijection between nondegenerate ∗-representations of
Aoα G and covariant representations of α.

Proof sketch. Let σ be a nondegenerate ∗-representation of AoαG and consider its multiplier
algebra M(Aoα G). We have an injection G→M(Aoα G) by x 7→ δx, using the fact that
L1(G) is a 2-sided ideal in the multiplier algebra M(G), where we think of double centralizers
as finite Radon measures (this is true up to natural isomorphism). We also have an injection
A → M(A oα G), by a 7→ aδ1G . We can therefore obtain a covariant representation (π, U)
of α obtained by restricting σ to A,G. It follows that σ is the integrated form of (π, U).

In particular, it makes sense to talk about the hull-kernel topology on the set of covariant
representations of α.

Definition 13.18. For G a locally compact group, we let (A,α) and (B, β) be C∗-dynamical
systems. Let ϕ : A → B be a ∗-morphism. Then ϕ is a equivariant morphism with respect
to α, β if for every a ∈ A,

ϕ(α(x)(a)) = β(x)(ϕ(a)).

The category of C∗-dynamical systems over G has equivariant morphisms as its mor-
phisms by definition. Equivariant morphisms ϕ : A → B give rise to maps Cc(G → A) →
Cc(G→ B) given by

ϕ(f)(x) = ϕ(f(x)).

This naturally extends to the group C∗-algebras, so gives rise to a morphism ϕ : Aoα G→
B oα G. Therefore the following theorem holds.

Theorem 13.19. The map α 7→ A oα G is a functor from the category of C∗-dynamical
systems over G to the category of C∗-algebras.

Using category theory, we can obtain the following theorem.

Theorem 13.20. Let (A,α) be a C∗-dynamical system. Let I be an α-invariant ideal of A.
Then the natural action of α on A/Iis a C∗-dynamical system, and the natural arrows

0→ I oα G→ Aoα G→ (A/I) oα G→ 0

form a short exact sequence.
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In other words, the functor ·oαG is exact on α-invariant ideals. This is not true for the
reduced product.

Proof. Consider the short exact sequence

0 I A A/I 0i p
.

Straight from the definitions, the induced map p∗ is onto and p∗(i∗(Cc(G,A))) = 0. So i∗

maps into the kernel of p∗.
We now claim that the induced map i∗ is injective. Let σ be a faithful representation

of I oα G. Let (π, U) the covariant representation of σ. Then if σ is nondegenerate, so is
(π, U). Then π extends to a representation π̃ of A. Since π is nondegenerate, we can restrict
to the image of π(I) without any loss of generality when proving that (U, π̃) is covariant. In
fact,

U(x)π̃(a)(π(d)ξ) = π(α(x)(ad))U(x)ξ

which proves covariance of (U, π̃). So let σ̃ be a representation of AoαG for which (U, π̃) is
a covariant representation. Then

σ̃|i∗(IoαG) = σ,

so σ̃ ◦ i∗ is faithful on I oαG. Therefore ker i∗ = 0. In particular I oαG is isomorphic to an
ideal of Aoα G, and without loss of generality we assume that they are equal (i.e. i∗ is the
identity).

Finally we show exactness at AoαG; i.e. ker p∗ ⊆ I oαG. Since I oαG is a C∗-algebra,
AoαG/IoαG exists, and has a faithful representation σ. Pulling σ back along the quotient
map A oα G → A oα /I oα G, we obtain a representation of A oα G. Let (π, U) be the
corresponding covariant representation of Aoα G.

Let d ∈ I, h ∈ Cc(G). Let f ∈ Cc(G→ I) ⊆ I oα G be defined by

f(x) = h(x)d

so σ(f) = 0. Thus

0 =

∫
G

π(d)f(x)U(x) dx = π(d)

∫
G

f(x)U(x) dx.

Since the integral on the right does not have to be zero, π(d) = 0. So I ⊆ kerπ. Therefore
π drops to a representation τ of A/I oα G. It is routine to prove that σ = τ ◦ p∗. So
kerσ = ker p∗ ⊆ I oα G.

Note that the representation τ may not exist on the reduced product, which explains
why the theorem fails there.

13.2 Group actions on locally compact spaces

Let A be a commutative C∗-algebra and let G be a locally compact group which acts on A
by α. Then we can find a locally compact Hausdorff space M such that A = C∞(M). We
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have an action α of G on M by homeomorphisms, and G ×M is locally compact. We will
assume that α is jointly continuous , i.e. the map

G×M →M

(x,m) 7→ α(x)m

is continuous. Thus the action

α(x)(f)(y) = f(α(x)−1y)

of G on Cc(M) ⊆ A is isometric, in particularly, strongly continuous in L∞-norm. Moreover,
α is continuous in the inductive limit topology of Cc(M). Therefore if µ is an α-invariant
Radon measure on M , α acts strongly continuously on Lp(µ).

We now consider Aoα G, which contains Cc(G→ A). Since

(f ∗α g)(y) =

∫
G

f(x)α(x)(g(x−1y)) dx,

it follows that

(f ∗α g)(y)(m) =

∫
G

f(x)(m)g(x−1y)(α(x)−1m) dx.

Theorem 13.21. Let M be a second-countable locally compact Hausdorff space, A =
C∞(M) oα G. Let σ be an irreducible nondegenerate representation of A and let (π, U)
be the covariant representation of σ, I = kerπ. Let Z ⊆ M be the hull of I. Then there is
an α-orbit whose closure is Z.

Notice that I is α-invariant, hence an ideal of A. Expanding out the definitions, I is the
set of f whose supports are disjoint from Z. In particular, Z is closed and α-invariant and
A/I = C∞(Z). The theorem says that there is a m0 ∈M such that

Z = {α(x)m0 : x ∈ G}.

Example 13.22. For the irrational rotation, every orbit-closure is the entire circle, so for
every ideal, the hull is the entire space. This generalizes to various ergodic actions.

Proof of theorem. Since M is second-countable, so is Z. Let {Bn}n be open subsets of M
such that the Bn ∩ Z form a countable base for the topology of Z, Bn ∩ Z nonempty. Let

On =
⋃
x∈G

α(x)(Bn).

Then the On are open, α-invariant, and meet Z.
Let Jn = C∞(On) ⊆ C∞(M). Since On ∩ Z is nonempty, there is a f ∈ Jn which is not

identically zero on Z, by Urysohn’s lemma. So π(Jn) is nonzero. Since σ is nondegenerate,
so is π, and π(Jn)H generates a nonzero closed σ-invariant subspace. Since σ is irreducible,
π(Jn)H generates H.
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Let ξ be a unit vector of the representation space H. Define a Radon probability measure
µ on M by ∫

M

f dµ = 〈π(f)ξ, ξ〉.

If f ∈ I, f = 0 µ-almost everywhere. Therefore Z contains the support of µ. Since M
is second-countable, Jn is a separable C∗-algebra and we can find a countable normalized
approximate unit {en,m}m of Jn. We can assume that the en,m are compactly supported in
On. Since π|Jn is nondegenerate,

lim
m→∞

π(en,m)ξ = ξ.

The en,m are supported on On, so On contains the support of µ. Therefore

suppµ ⊆
∞⋂
n=1

On ∩ Z.

(Here we are using the cardinality assumption; the complements must be µ-null and there
are only countably many of them.) Since µ is a probability measure, suppµ is nonempty.

Let m0 ∈ suppµ. Each of the On is α-invariant, so αG(m0) ⊆ suppµ. So for each n,
αG(m0) ⊆ On∩Z. Since αG(m0) is contained in every element of an open base of Z, αG(m0)
is dense in Z.

Example 13.23. Let M be the two-point compactification of R. Then the action of R on
M by translation is jointly continuous, and R is a dense orbit, but the boundary points ±∞
are fixed points. So not every point has a dense orbit. We will study C(M) oR soon.

Let α be an action of G on M . For m ∈ M , let Gm be the stabilizer of m. By the
orbit-stabilizer theorem, the map

G/Gm → αG(m)

x 7→ αxGm(x)

is a bijection (where xGm is the coset of Gm by x). Now Gm is a closed normal subgroup
so G/Gm is a locally compact group. In general the orbit-stabilizer map G/Gm → αG(m)
is not a homeomorphism. It is favorable that the orbit of x is open in its closure, in which
case the orbit is locally compact.

Theorem 13.24. Let m0 ∈ M . If G is a second countable group which acts on M by α,
and αG(m0) is locally compact, then G/Gm0 → αG(m0) is a homeomorphism.

Proof. Use the Baire category theorem on the locally compact space αG(m0).

Let H be a closed normal subgroup and let M = G/H. Then G acts on M by left
translation, and A = C∞(M) o G is a C∗-algebra. If H = G, then A = C∗(G). If H = 0,
then A = C∞(G) oG.

In case H = 0, we study the covariant representation on L2(G) given by U the left regular
representation, π the representation by pointwise representation; i.e.

π(f)(ξ)(x) = f(x)ξ(x).
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To see covariance, we compute

U(x)π(f)(ξ)(y) = π(f)(ξ)(x−1y) = f(x−1y)ξ(x−1y) = π(α(x)(f))(U(x)(ξ))(y).

Definition 13.25. The Schrodinger representation of a group G is the covariant represen-
tation (π, U) of C∞(G)oG on L2(G) given above.

We compute the integrated form σ of the Schrodinger representation by realizing that

Cc(G→ A) = Cc(G→ C∞(G))

is generated by Cc(G×G). Given F ∈ Cc(G×G) we have

σ(F )(ξ)(x) =

(∫
G

π(F (y))U(y)(ξ) dy

)
(x)

=

∫
G

F (y, x)ξ(y−1x) dy.

Now f, g ∈ Cc(G) can be viewed as elements of L2(G), which has a rank-1-operator-valued
inner product 〈·, 〉·0. In fact,

〈f, g〉0(ξ)(x) = f(x)〈g, ξ〉(x)

= f(x)

∫
G

g(y)ξ(y) dy

=

∫
G

f(x)g(y−1)ξ(y−1)∆(y−1) dy

=

∫
G

f(x)g(y−1x)ξ(y−1x)∆(y−1x) dy.

We define
〈f, g〉E(x, y) = f(x)g(y−1x)∆(y−1x).

Then this is an inner product which has values in Cc(G×G). Let E be the (algebraic) span
of

{〈f, g〉E : f, g ∈ Cc(G)}.
Thus

〈f, g〉E ∗ 〈h, k〉E = 〈〈f, g〉Eh, k〉E
and

π(〈f, g〉E)π(〈h, k〉E) = 〈f, g〉0〈f, g〉0 = 〈〈f, g〉0h, k〉0
= 〈g, h〉〈f, k〉0 = π(〈g, h〉〈f, k〉E)

allows us to define
〈f, g〉E ∗ 〈h, k〉E = 〈g, h〉〈f, k〉E.

This defines a convolution on E which is compatible with the convolution on C∗(G,C∞(G)).
Therefore E is a subalgebra of C∗(G,C∞(G)). Clearly E is a ∗-algebra since

〈f, g〉E = 〈g, f〉E.
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Moreover, Cc(G) is dense in L2(G), so π(E) is dense in B0(H).
We claim that E is also closed under pointwise multiplication. In fact,

〈f, g〉E〈h, k〉E(x, y) = f(x)(∆g)(y−1x)h(x)(∆k)(y−1x)

= f(x)g(x)∆gk(y−1x)∆(y−1x).

Clearly E is closed under complex conjugation and separates points of G × G from zero.
Thus we can apply the Stone-Weierstrass theorem, but this is not very interesting because
we actually want to prove that E is dense in Cc(G×G) for the inductive limit topology. In
fact, if O is an open, precompact subset of G×G, we can find V ×W ⊆ G×G, where V,W
are open, precompact subsets of G and consider the algebraic span of 〈Cc(V ), Cc(W )〉E. By
the Stone-Weierstrass theorem, this is L∞-dense in Cc(V ×W ). One can then check that E
is dense in L1(G→ C∞(G)) and hence dense in C∗(G,C∞(G)).

We claim that E has the same operator norm as C∗(G,C∞(G)). In fact if f1, . . . , fn
are an L2-orthonormal set in Cc(G) then the 〈fj, fk〉0 span the C∗-algebra Cn×n once we
choose a basis. On C∗-algebras the operator norm is uniquely determined, so E agrees with
C∗(G,C∞(G)) in operator norm on any finite-dimensional subalgebra. Such matrix algebras
can be used to approximate C∗(G,C∞(G)) so we have proven the claim. We consider that
we have proven the following theorem.

Theorem 13.26. C∞(G) oG = B0(L2(G)).

Since B0(L2(G)) has no proper ideals, one also has C∞(G)orG = B0(L2(G)). Therefore
the translation action is amenable.

Example 13.27. If G is not an amenable group, then G still admits an amenable action by
translation.

Now if G acts on X by α, and O is an orbit of α, then if O is an orbit which is open in
its closure, C∞(O) ⊆ C(O). Moreover, C∞(O) oα G = B0(L2(G)).

Example 13.28. Let R act on its two-point compactification X by translation. Then
C∞(X) = C(X) contains C∞(R). So

C(X) oR ⊃ C∞(R) oR = B0(L2(R))

which gives a GCR representation of C(X) on L2(R). It is not CCR because C(X) is unital.
If we instead look at the orbits of ±∞, we see that C∗(R) = C(±∞)oαR. By the Fourier

transform, Ĉ∗(R) = R. (More generally, if G is a locally compact abelian group, then C∗(G)

is a commutative C∗-algebra, Ĉ∗(G) consists of one-dimensional representations of G, which
are exactly the continuous morphisms G→ S1.)

Definition 13.29. Let H be a closed normal subgroup of G. For simplicity we assume that
the Haar measure on G/H is G-invariant. Let V : H → U(K) be a unitary representation.
We define a Hilbert space by taking all functions ξ : G→ K such that for all x ∈ G, s ∈ H,
ξ(xs) = V (s)∗ξ(x) where we define 〈ξ, η〉(x) = 〈ξ(x), η(x)〉. Since 〈ξ, η〉 is constant on cosets,
it drops to a function on G/H such that

〈ξ, η〉(x) =

∫
G/H

〈ξ, η〉(x) dx.

136



We take the Hilbert space to be all ξ such that 〈ξ, ξ〉 <∞, which G acts on by left translation.
This action of G is called the induced representation of G from V , IndV .

If H,V are as above, α the action of G on C∞(G/H) by left translation, then we obtain
a covariant representation of α on the induced representation space by letting C∞(G/H) act
by left translation and λ be the left action of G on G/H. Then (C∞(G/H), λ) is a covariant
representation of α.

Let G be a unimodular group (though the same argument goes through without too much
trouble otherwise). Recall that Cc(G/H → G) ⊆ C(G/H)oαG. We define for f, g ∈ C∗(H),

〈f, g〉C∗(H) = f ∗ ∗ g|H .

Here we are using continuity; if H is a Haar null set then the restriction map is not defined
for measurable functions in general. Let B = Cc(G/H → G). Then we can define

〈f, g〉Bh = f〈g, h〉C∗(H).

One can then prove C(G/H) oα G is strongly Morita equivalent to C∗(H). This theory
generalizes to when G is merely a groupoid rather than a group.

13.3 Semidirect products of groups

Definition 13.30. If N and Q are locally compact groups, and α : Q → Aut(N) a jointly
continuous action, then we define N oα Q as follows. As a Hausdorff space, N oα Q is the
product of topological spaces N ×Q. The group operation is defined by

(n1, q1)(n2, q2) = (n1α(q1)(n2), q1q2).

Then N oα Q is the semidirect product of locally compact groups.

We remember the group operation on N oα Q by recalling that “whenever we want to
commute an n and a q, the q must act on the n.”

Let G = N oα Q. Then Q and N embed in G in the obvious way and we have a split
exact sequence

0→ N → G→ Q→ 0.

Therefore any representation of G restricts to representations of N and Q. Moreover, Q acts
on N by inner automorphisms, i.e.

qnq−1 = α(q)(n).

The action of q does not preserve Haar measure, but it does send Haar measure to a
translation-invariant measure; i.e. it multiplies Haar measure by a scalar, say σ(q).

We now define an action of Q on C∗(N). In fact, for f ∈ Cc(N), n ∈ N , q ∈ Q,

α(q)(f)(n) = σ(q)f(α(q)(n)).

Then α(q) is an isometry in L1-norm, so Q acts on L1(N) by isometries. This action α
immediately extends to C∗(N).
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Let U be a unitary representation of G. Restricting, we obtain representations of C∗(N)
and Q, and U is a covariant representation of α : Q→ Aut(C∗(N)). Conversely, a represen-
tation of C∗(N) oα Q gives rise to a covariant representation of α. Then

C∗(N) oα Q = C∗(G).

This can be remembered as C∗(N) oα Q = C∗(N oα Q).
Let N be an abelian group. Then C∗(N) = C∞(N̂) (where N̂ denotes the Fourier

transform, N̂ = Hom(N,S1) in the category of locally compact groups). Since Q acts on N
and hence C∗(N), Q also acts on N̂ . In fact if ϕ ∈ N̂ , then

α(q)(ϕ)(n) = ϕ(α(q−1)(n)).

Then C∗(N oα Q) = C∞(N̂) oα Q. Thus we are back in the original situation of a locally
compact group acting on a locally compact space.

Example 13.31 (Wigner 1939). Let L be the Lorentz group, the automorphism group of
Minkowski spacetime (linear automorphisms that preserve the Lorentzian metric g(x, y) =
−x0y0 + x1y1 + x2y2 + x3y3.) Then L acts on R4, so we have a semidirect product R4 o L,
the Poincare group. The unitary representations of the Poincare group are important in
relativistic quantum mechanics. Elementary particles “should be” completely determined by
their symmetries, so correspond to representations of certain stabilizers of R4oL. This paper
led to the discovery that electrons have spin. In principle one could use the representation
theory of R4 o L to rederive the periodic table of elements.

13.4 The Heisenberg commutation relations

We now look at an algebra with “invalid” generators and relations.
In quantum physics, the position q and momentum p observables act on certain dense

subspaces of tensor powers of L2(R) with

[p, q] = i~.

They must be unbounded operators, since their commutator is a scalar. So q, p are not
elements of a C∗-algebra. This relation is called the Heisenberg commutation relation.

We want to be able to form the holomorphic functional calculus for an unbounded oper-
ator T . In particular, we would like to define a one-parameter unitary group by the group
morphism t 7→ eitT .

Example 13.32. The Schrodinger equation is the PDE that says that if H is the Hamilto-
nian, the action of its one-parameter unitary group t 7→ eitH is the time-advance map.

Reasoning just formally about how the holomorphic functional calculus should behave,
we let U(s) = eisP and V (t) = eitQ. Weyl observed that

U(s)V (t)U(s)∗ = eitU(s)QU(s)∗
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so we let
ϕ(s) = U(s)QU(−s).

Then
ϕ′(s) = iU(s)(PQ−QP )U(−s) = −~.

So ϕ(s) = Q− s~ whence

U(s)V (t) = eitQe−i~tsU(s) = e−i~stV (t)U(s).

Recall that R̂ ∼= R (noncanonically). If we let 〈·, ·〉 be the pairing of R and R̂, then we
have just proved

U(s)V (t) = 〈s, t〉V (t)U(s).

Here the choice of isomorphism is induced by some normalization of the Fourier transform.

Definition 13.33. Let G be an locally compact abelian group. By a representation for the
Heisenberg commutation relations of G we mean a pair of unitary representations (U, V ),
U : G→ Aut(H), V : Ĝ→ Aut(H), such that

U(s)V (t) = 〈s, t〉V (t)U(s).

Any unitary representation V of Ĝ lifts to a representation π of the commutative C∗-
algebra C∗(Ĝ), which is C∞ of the double dual of G. By the Pontryagin duality theorem,
the double dual of any locally compact abelian group is itself, so C∗(Ĝ) = C∞(G). Let
f = ĥ ∈ C∞(G) for some h ∈ L1(G). Then

π(f) =

∫
Ĝ

h(t)V (t) dt.

Therefore

U(s)π(f)U(s)∗ =

∫
Ĝ

h(t)U(s)V (t)U(s)∗ dt =

∫
Ĝ

h(t)〈s, t〉V (t) dt

= π(αs(f))

where α is the action of G on C∞(G) by left translation. So (π, U) is a covariant represen-
tation of α and hence a representation of C∞(G) oα G = B0(L2(G)). But B0(L2(G)) only
has one irreducible representation, which turns out to be the Schrodinger representation.
This shows that the Heisenberg picture and the Schrodinger picture are equivalent. This is
a theorem of von Neumann which was important to the foundations of physics.

13.5 Projective representations

Let W : G× Ĝ→ U(H) be defined by

W (s, t) = U(s)V (t),

where (U, V ) is a representation for the Heisenberg commutation relations. Then

W (s, t)W (s′, t′) = U(s)V (t)U(s′)V (t′) = −U(s+ s′)V (t)〈s′, t〉V (t′)

= 〈s′, t〉U(s+ s′)V (t+ t′) = 〈s′, t〉W (s+ s′, t+ t′).
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Definition 13.34. Let G be a group. A projective representation of G is a continuous
function W : G→ U(H) defined by

W (x)W (y) = c(x, y)W (xy)

for some c : G2 → S1.

Here we are thinking of S1 as the unit circle subgroup of C. It is a morphism up to a
harmless constant. In fact, if PH is the projective space of some Hilbert space, then every
projective representation drops to a morphism of groups G → Aut(PH), since it permutes
the one-dimensional subspaces. Wigner proved that every automorphism of PH is given by
a unitary or antiunitary (i.e. conjugate linear) operator. If P is a rank-1 projection, then P
is sent to UPU−1 by any such automorphism, for U a unitary or antiunitary operator.

Example 13.35. Charge-conjugation, parity, and time-reversal are examples of antiunitary
operators in quantum field theory.

So we have constructed a projective representation of G× Ĝ.
Up to a normalization we may assume U1 = 1.
Given d : G→ S1, set V (x) = d(x)U(x). Then

V (x)V (y) = d(x)d(y)U(x)U(y) = d(x)d(y)d(xy)V (xy).

Associativity of Aut(PH) manifests as

c(xy, z)c(x, y) = c(x, yz)c(y, z).

We say that c is a 2-cocycle for G valued in S1.

Example 13.36. Let Ck be the set of all functions Gk → S1. The boundary operator for
the homology of groups with values in S1 is defined by ∂ : C1 → C2 by

∂d(x, y) = d(x)d(y)d(xy),

and ∂ : C2 → C3 by
∂d(x, y, z) = c(xy, z)c(x, y)c(x, yz)c(y, z).

This extends to a homology theory for all k. Here S1 can be replaced by any abelian group.
If c′ = (∂d)c, then c′ and c are homologous.

Assume that for all ξ ∈ H, x 7→ U(x)(ξ) is measurable. Then for every f ∈ L1(G), we
define

U(f)(ξ) =

∫
G

f(x)U(x)(ξ) dx.

Then ||U(f)|| = ||f ||L1 and U(f)U(g) = U(f ∗cg) where ∗c is the twisted convolution defined
by

f ∗c g(x) =

∫
G

f(y)g(y−1x)c(y, y−1x) dy.
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So L1(G, c) (which is L1 with the twisted convolution ∗c) is a Banach algebra, which is not
commutative even if G is abelian. If c is homologous to c′ then we have an isomorphism
L1(G, c)→ L1(G, c′).

Given a 2-cocycle c we can consider all projective representations of G where the 2-cocycle
is homologous to c. In these cases, the isomorphism of Banach algebras above implies that
we can assume that the 2-cocycle is actually c. For f ∈ L1(G, c), this defines the C∗-norm
by

||f ||C∗(G,c) = sup
U
||U(f)||

where U ranges over all projective representations whose cocycles are homologous to c. Here
we have a twisted adjoint, which for unimodular groups can be explicitly expressed as

f ∗(x) = f(x)c(x, x−1).

We have a left regular representation L : L1(G, c)→ L2(G) defined by

L(f)(ξ)(x) =

∫
G

f(y)ξ(y−1x)c(y, y−1x) dy.

This gives rise to the reduced C∗-algebra C∗r (G, c).

Example 13.37. Let G = Rn × R̂n. We define the cocycle c((x, s), (y, t)) = 〈(x, s), (y, t)〉.
We already saw that C∗(G, c) ∼= B0(L2(G)) in an unnatural way, by uniqueness of the
Heisenberg commutation relation. Now G is abelian, but B0(L2(G)) is far from commutative.

Example 13.38. Let G = Zn. Then every cocycle is homologous to a bicharacter , a cocycle
c of the form

c(m, `) = e〈im,Θ`〉

where Θ ∈ Rn×n.
When we study G we will assume without loss of generality that c is a bicharacter.

Henceforth we will mainly be interested in discrete groups, but really we are actually studying
Zn.

If G is a discrete group with a cocycle c, we can define a faithful tracial state τ on
`1(G, c) (hence on C∗(G, c)) by τ(f) = f(e). Moreover, δ1 is the identity of `1(G, c), and
τ(f ∗c f ∗) =

∑
y∈G |f(y)|2. From this it follows that the GNS construction for τ gives a

faithful representation `1(G, c)→ `2(G), so extends to a representation C∗(G, c)→ `2(G).
If G is discrete and abelian, then Ĝ is compact, and we have an action α̂ : G →

Aut(C∗(G, c)),
α̂(t)(f)(x) = 〈x, t〉f(x).

Then
α̂(t)(f ∗c g)(x) = α̂(t)(f) ∗c α̂(t)(g)(x).

To study the properties of this action α̂, G be a compact group with its Haar probability
measure, and α : G→ AutA an action. Then we define P : A→ A,

P (a) =

∫
G

α(x)(a) dx.

141



Then P is α-invariant, α(y)(P (a)) = P (a). In particular, if we let AG be the algebra of
all fixed points of α, P carries A into AG. Conversely, if a is actually a fixed point, then
P (a) = a. So P is the projection map A→ AG.

Definition 13.39. Assume B ⊆ A, and P : A → B is a projection. If for every b ∈ B,
a ∈ A, P (ab) = P (a)b and P (ba) = bP (a), we say that P is a conditional expectation.

It is easy to check that the projection P : A→ AG is a conditional expectation. Moreover,
if a > 0 then P (a) > 0.

If G is a compact abelian group (in applications, G is usually a torus), then Ĝ is discrete
(in applications, Zn). We let α be an action of G on A. For each t ∈ Ĝ, set

at =

∫
G

〈x, t〉αx(a) dx.

So the at are the generalized Fourier coefficients of a. We have

α(y)(at) = α(y)

(∫
G

〈x, t〉α(x)(a) dx

)
=

∫
G

〈y−1x, t〉α(x)(a) dx = 〈y, t〉at.

We now set At = {a ∈ A : ∀y α(y)(a) = 〈y, t〉a}. Then at ∈ At and At is a closed subspace,
hence a C∗-algebra. For a ∈ At, b ∈ As, we have

α(y)(ab) = α(y)(a)α(y)(b) = 〈y, t〉〈y, s〉ab = 〈y, ts〉ab

so ab ∈ Ats.
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Chapter 14

Noncommutative geometry

14.1 Quantum tori

Fix Θ ∈ Rd×d and let cΘ(m,n) = e2πim·Θn, for (m,n) ∈ Zd+d. Then cΘ is a cocycle for the
duality of Zd and the torus T d. In fact the pairing is given by

cΘ = 〈m,Θn〉.

Definition 14.1. The C∗-algebra AΘ = C∗(Zd, cΘ) is called the algebra of functions on the
noncommutative torus or quantum torus of dimension d.

Now
δm ∗ δn ∗ δ∗m = 〈n, (Θ−Θt)m〉δn.

So we can reasonably define

ρΘ(m) = (Θ−Θt)m ∈ T d.

We now define
HΘ = {ρΘ(m) ∈ T d : m ∈ Zd}.

Then HΘ is an subgroup of T d, so ρΘ : Z→ T d is a morphism of groups. It gives rise to an
action α of HΘ on A defined by

δmaδ
∗
m = α(ρΘ(m))(a).

14.2 The 2-torus

Theorem 14.2. If HΘ = T d then AΘ is simple.

Proof. If I is a closed ideal of AΘ then I is closed under conjugation, hence under the action
of HΘ. Now AΘ is a space of noncommutative functions on T d so we’re done.

Example 14.3. If d = 2, we take Θ =

[
θ

0

]
. Then Θ−Θt =

[
θ

−θ

]
. So

ρΘ(m1,m2) = (θm2,−θm1).
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If θ is irrational then {θm2 : m2 ∈ Z} is dense in S1. Therefore ρΘ acts densely on T 2. So if
Θ is irrational then AΘ is simple.

Let M = S1, θ ∈ R, α the action of Z on M by rotation by θ. Then C(M) oα Z
is a rotation algebra, i.e. it is the universal C∗-algebra generated by a unitary, namely
U = e2πit. If V is the unitary acting on C(M) by V f = α(1)(f) (so translation by θ), then
V U = e2πiθUV . One can then show that

C(M) oα Z = C∗(Z2, cΘ)

where Θ =

[
θ

−θ

]
. So this is another construction of AΘ.

If θ is irrational, then α is a free action (i.e. all stabilizers are trivial). We now define
a morphism C(M) → Cb(Z) by f̃(n) = f(α(n)(t0)) for some fixed t0 ∈ M . Now Cb(Z)
acts on `2(Z) by multiplication and Z acts on `2(Z) by translation. This gives a covariant
representation of α on `2(Z). One can then show using certain commutation relations that
the covariant representation is irreducible, hence gives an irreducible representation of AΘ.
This depends on the orbit of t0, so we construct uncountably many irreducible representations
of AΘ, all of which have kernel 0 since A is simple.

Thus we have constructed a C∗-algebra with lots of irreducible representations that have
the same primitive ideal but are not unitarily equivalent. There are even more irreducible
representations that we have not treated.

If θ is rational then every orbit is finite, and C(M) oα Z is a continuous field of d × d
matrix algebras, which is not isomorphic to C(T 2 →Md).

Example 14.4. Let M be a compact Hausdorff space, G a finite group, α a free action
of G on M . Then M/α is a compact Hausdorff space and we have a Morita equivalence
C(M) oα G → C(M/α). “Most” of noncommutative algebraic topology is only defined up
to Morita equivalence, so from the point of view of an algebraic topologist, C(M) oα F =
C(M/α). This is a very unusual situation!

If G is an infinite group instead, then M/α may not be Hausdorff (for example, if G is
a Lie group which foliates M badly). Then C(M/α) may not be a C∗-algebra, so we have
no way of studying its algebraic topology. We can still find topological invariants of the
dynamical system α by instead studying the topology of C(M) oα G.

Example 14.5. Let H = U +U∗+ r(V +V ∗) where U, V are the generating unitaries of the
2-dimensional quantum torus. In physics, U + U∗ is the potential energy, r(V + V ∗) is the
kinetic energy, r “electron coupling”, and H the Hamiltonian. Hofstadter (of Godel-Escher-
Bach fame) showed that if θ is rational but with large denominators, then the spectrum of
H approximates a Cantor set. So he conjectured that if θ is irrational then the spectrum is
Cantor space. Katz offered 10 martinis for anyone who could prove this, which was known
as the ten martinis conjecture. Avila et al. proved the ten martinis conjecture.

If δm ∈ Z(AΘ) then α(ρΘ(m)) is the identity. So for all n,

1 = 〈n(Θ−Θt)m〉 = 〈(Θt −Θ)n,m〉

so m lies in the dual group H⊥Θ of HΘ. One can then show that Z(AΘ) = C∗(H⊥Θ ) = C(Ĥ⊥Θ ).

Then we can express AΘ as a continuous field over C(Ĥ⊥Θ ).
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14.3 Noncommutative smooth manifolds

We now take the theory of Lie groups and smooth manifolds and turn it into a noncommu-
tative theory.

Let G be a Lie group. We can always assume that G is a closed, connected subgroup of
GL(Rn). In fact GL(Rn) can be obtained by applying the exponential map to Rn×n; i.e. the
exponential of a matrix is an invertible matrix. We therefore define LieG = {X ∈ Rn×n :
∀t ∈ R etX ∈ G}. Then LieG is a Lie algebra and Lie is the functor that sends a Lie group to
its Lie algebra. Besides, exp : LieG→ G is the exponential map (in the sense of Riemannian
geometry), so is close to the identity of G a homeomorphism.

Given X ∈ LieG, t 7→ etX is a morphism of groups R→ G; i.e. a smooth one-parameter
subgroup of G. In fact every one-parameter subgroup is of this form, though we note that
t 7→ etX may not be injective. (For example S1 is a one-parameter subgroup which is
periodic.)

Example 14.6. LieT d = Rd.

Let α be a strongly continuous action of R by isometries on a Banach space B. Let
b ∈ B. Then we have a one-parameter semigroup r 7→ α(r)(b).

Definition 14.7. Let G be a Lie group and α a strongly continuous action of G by isometries
on a Banach space B. Given X ∈ LieG, b ∈ B, X 7→ α(X)(b), the directional derivative is

DXb = lim
r→0

α(exp(rX))(b)− b
r

.

We let B∞ be those b ∈ B such that every higher directional derivative DX1 · · ·DXnb exists.

Theorem 14.8 (Garding). Let f ∈ C∞comp(G), f supported in a small enough neighborhood
of the identity. Given b ∈ B, then the integrated form α(f)(b) ∈ B∞.

Proof. Let X ∈ LieG. Then

DX(α(f)(b)) = lim
t→0

α(exp(tX))(α(f)(b))− α(f)(b)

t

= lim
t→0

1

t

(
α(exp(tX))

∫
G

f(x)α(x)(b) dx−
∫
G

f(x)α(x)(b) dx

)
= lim

t→0

1

t

(∫
G

f(exp(−tX)x)α(x)(b) dx−
∫
G

f(x)α(x)(b) dx

)
= lim

t→0

∫
G

f(exp(−tX)x)− f(x)

t
− α(x)(b) dx

=

∫
G

D−Xf(x)α(x)(b) dx.

So α(f)(b) is once differentiable. Now use the fact that

DYDXα(f)(b) = α(DYDXf)(b)

to see that α(f)(b) twice differentiable and induct.
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Corollary 14.9. B∞ is dense in B.

Proof. Choose an action α and let fn ∈ C∞comp(G) be an approximate identity for L1(G).
Then the sequence of α(fn)(b) approximates b arbitrarily well.

Let A be a Banach algebra. If α is a strongly continuous action by algebra homomor-
phisms of the Lie group G, then for a, b ∈ A∞, X ∈ LieG, the directional derivative DX is
a derivation of A. It is reasonable to think of the space of derivations of A as “vector fields
on the noncommutative space Â,” assuming that the space of derivations has the structure
of a A-module. But in general, it is only a Z(A)-module. Therefore, in general, we cannot
define the tangent bundle of a noncommutative smooth manifold.

Example 14.10. Let G = T d so Ĝ = Zd and LieG = Rd, and let α be an action of G on a
Banach space B. Let b ∈ B∞. Then

α(f)(DXb) = lim
t→0

∫
G

f(x)α(x)

(
α(exp(tX))(b)− b

t

)
dx

= lim
t→0

∫
G

(f(x exp(−tX))− f(x))α(x)(b)

t
dx = α(DXf)(b)

where we used the fact that G is abelian, hence unimodular. (This formula is therefore true
for any unimodular group.) The Fourier transform of b is given by

(DXb)n = α(en)(DXb) = −α(DXen)(b) = 2πinXbn

where
en(t) = e2πint,

and the multiplication of Zd and Rd is given by the dot product.
Let the Laplacian ∆ act on B∞ by

(∆b)n =
∑
j

(2π)2(nEj)
2bn

where the Ej form a basis for Rd. Then for k ∈ N,

((1 + ∆)kb)n =

(
1 + (2π)2

∑
j

(nEj)
2

)k

bn

so

bn =
((1 + ∆)kb)n

(1 + (2π)2
∑

j(nEj)
2)k

whence

||bn|| ≤
||(1 + ∆)kb||

(1 + (2π)2
∑

j(nEj)
2)k

.

Therefore if p is a polynomial on Zd,

p(n)||bn|| ≤
|p(n)| · ||(1 + ∆)kb||

(1 + (2π)2
∑

j(nEj)
2)k
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and if k is large enough, it follows that n 7→ |p(n)|||bn|| is bounded (since (1 + ∆)kb is
independent of n). Since p can grow arbitrarily fast, the function n 7→ ||bn|| lies in C∞(Zd).
In fact it lies in the Schwartz space of C∞(Zd).

Theorem 14.11. Let b ∈ B. Then b ∈ B∞ if and only if n 7→ ||bn|| is a Schwartz function
on Zd.

Example 14.12. Recall that AΘ = C∗(Zd, cΘ). Then an ∈ C and cΘ is an action of T d, so
A∞Θ is isomorphic to the Schwartz space of Zd.

We now introduce noncommutative differential forms. Given a ∈ A∞, let da : LieG→ A
be given by

da(X) = α(X)(a).

Then d is a derivation. We let Ω̃ be the space of linear maps LieG → A, viewed as a
(A,A)-bimodule. Then let Ω be the submodule generated by d; i.e. linear combinations of
elements of the form a db, i.e. 1-forms on A.

Definition 14.13. Let A be a C∗-algebra. The (A,A)-bimodule Ω is known as the noncom-
mutative cotangent bundle of A.

From this it is not difficult to define the higher exterior power Ωk and define the boundary
map

d : Ωk → Ωk+1.

14.4 Noncommutative vector bundles

Let X be a compact Hausdorff space, E a vector bundle over X, and let Γ(E) be the vector
space of continuous sections of E. Given ξ ∈ Γ(E) and f ∈ C(X), (fξ)(x) = f(x)ξ(x) by
scalar multiplication so Γ(E) is a C(X)-module.

In this section we will assume all C(X)-modules are finitely generated.

Definition 14.14. Let R be a unital ring. A projective module over R is a R-module V
which is isomorphic to a direct summand of a free R-module.

In other words, if V is free then there is a R-module W and a free R-module F such that
V ⊕W ∼= F .

Theorem 14.15 (Swan). Let X be a compact Hausdorff space. A C(X)-module V is
projective if and only if there is a vector bundle E such that V ∼= Γ(E). Moreover, we have
an isomorphism of vector bundles E ∼= F if and only if Γ(E) ∼= Γ(F ).

So we have an equivalence of categories relating projective C(X)-modules and vector
bundles over X. Though Swan proved this result in 1962, by this time Grothendieck had
already started identifying projective modules with vector bundles over algebraic varieties.

Let R be a ring. If we view Rn as a right R-module, then EndR(Rn) ∼= Mn(R), where
Mn(R) is viewed as acting on Rn from the left. So we usually will view Rn as a right
R-module. Henceforth we assume that every ring acts on its modules from the right.
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If V is a projective module which appears as a direct summand in Rn, then there is a
projection P ∈ EndR(Rn) such that P (Rn) ∼= V . This is not a bijection between projections
and projective modules, but it is often useful. Indeed, for any projection P , P (Rn) is a
projective R-module.

Example 14.16. Let R = C(X), P ∈ Mn(R) a projection. Then P acts on Rn = C(X →
Cn). So P (Rn) is a projective module, and we can find the vector bundle from Swan’s
theorem by looking at its localizations.

If R is a unital ring, let S(R) be the space of isomorphism classes of projective R-modules.
For V,W isomorphism classes, define V + W = V ⊕W . Then S(R) is an abelian monoid,
and S is a functor from unital rings to abelian monoids. But S(R) is badly behaved because
V ⊕W ∼= V ′ ⊕W does not imply V ∼= V ′.

Example 14.17. Let T be the circle, A = C(T → R). So A consists of periodic functions
R → R which are continuous of period 1. Let Ξ±n be the set of continuous ξ : R → R such
that ξ(t+ n) = ±ξ(t). Then

S(R) = {Ξ±n : n ∈ Z}.

From the space Ξ−1 we can recover the Moebius strip.

Example 14.18. Let A = C(T 2), viewed as continuous functions f : R2 → C which are
periodic of period 1 in both variables. Now let Ξm,q be the space of ξ ∈ C(R2 → C) such
that ξ(s+ 1, t) = ξ(s, t) and

ξ(s, t+m) = e2πiqsξ(s, t).

Together with the free A-modules, we recover all projective modules over A, i.e. all C-vector
bundles over T 2. So we have classified vector bundles on a torus.

Example 14.19. Let S2 be the 2-sphere, viewed as the unit sphere of R3, and let A =
C(S2 → R). Let Ξ be the A-module of continuous sections of the tangent bundle TS2 of S2.
This can be viewed as the set of ξ ∈ C(S2 → R3) such that for all x ∈ S2, 〈ξ(x), x〉 = 0.
By the hairy ball theorem, TS2 is a nontrivial bundle. But the normal bundle NS2, whose
continuous sections consist of ξ : S2 → R3 such that ξ(x) ∈ Rx, is isomorphic to S2 × R, so
is a trivial bundle. Therefore, if S(A) was a cancellative monoid, then

Ξ⊕ A ∼= Ξ⊕NS2 ∼= A3 ∼= A2 ∼= A

so we could conclue that Ξ ∼= A2 and hence TS2 is trivial, a contradiction. Therefore S(A)
is noncancellative, and constructing its Grothendieck group will be quite difficult.

Let C(R) be the universal cancellative abelian monoid for S(R). In other words, for
every V, V ′ for which there exists W with V ⊕W ∼= V ′⊕W , we impose the relation V = V ′.
We then take the universal abelian group containing C(R), say K0(R), i.e. the Grothendieck
group1 of S(R). (Constructively, elements of K0(R) are pairs (V,W ) where V,W are elements
of C(R), and we are thinking of (V,W ) as meaning V −W .) We define the positive elements
of K0(R) to be those in C(R).

1According to Rieffel, Grothendieck does not deserve to have such a trivial construction named after him.
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In fact one constructs K-theoretic groups Kn(R) for every n ∈ N. The first groups
n ∈ {0, 1, 2} were well-known previously, but Quillen introduced K-theoretic groups for any
ring and any natural number. But we are not interested in Quillen’s K-theoretic groups. We
introduce, for R a Banach algebra, the topological K-theoretic group Ktop

1 (R). If one tries to
define Ktop

2 (R) over C we find Ktop
2 (R) = K0(R); similarly over R we have Ktop

8 (R) = K0(R).
This is the Bott periodicity theorem.

Example 14.20. Let Aθ = C∗(Z2, cθ) be the quantum 2-torus. Then A0 = C(T 2). In case
of the 2-torus, Aθ = C(T ) oαθ Z acts on L2(T ). We have projections on Aθ provided that
θ ∈ (0, 1), namely

P = U−1Mh +Mf +MgU1

for certain multiplication operators Mf ,Mg,Mh. If ε > 0 and θ + ε < 1, then the function
f is supported on [0, θ + ε] and identically 1 on [ε, θ] and the trace t(P ) of the projection is
given by

t(P ) =

∫ 1

0

f = θ.

If there is a unitary equivalence P ∼= P ′, then t(P ′) = t(P ). By a theorem on the home-
work, there are only countably many projections in a separable C∗-algebra up to unitary
equivalence, so Aθ contains countably many traces, and its set of traces is determined by
θ. Yet there are uncountably many choices of θ. So Rieffel’s theorem says that there are
uncountably many quantum tori up to C∗-isomorphism. In fact (Z + Zθ) ∩ [0, 1] indexes
the quantum tori that embed in Aθ. But when Rieffel showed this result to Voicolescu, he
proved Voicolescu’s theorem, which shows that

K0(Aθ) ∼= Z2

where C(Aθ) = (Z + Zθ) ∩ [0,∞). So the K-theoretic group is not a complete invariant of
the quantum tori, but the positive elements of the K-theoretic group give more information.
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Part IV

Complex analysis
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Chapter 15

Holomorphy in several complex
variables

This chapter follows Hormander’s SCV book, Chapter II, and Zworski’s lectures on SCV.

15.1 Cauchy-Riemann equations

Let us generalize the Cauchy-Riemann equations to higher dimensions.

Definition 15.1. Let f : Cn → C be a function. We write z = x+ iy and define the partial
derivatives

∂f

∂zj
=

1

2

(
∂f

∂xj
− i ∂f

∂yj

)
,

and
∂f

∂zj
=

1

2

(
∂f

∂xj
+ i

∂f

∂yj

)
.

We define the Wirtinger differential of f by ∂f =
∑

j ∂zjfdzj and ∂f =
∑

j ∂zjfdzj. Finally,

we define the total differential df = ∂f + ∂f .

For ease of notation we frequently make the decomposition dzj = dxj + idyj and dzj =
dxj − idyj. Then df =

∑
j ∂xjf dxj + ∂yjf dyj, as it should be.

Notice that if n = 1 and f is holomorphic, then ∂f = 0. Indeed, f = u + iv solves the
Cauchy-Riemann equations, so

∂f

∂z
=

1

2

(
∂u

∂x
− ∂v

∂y
+
∂u

∂y
+
∂v

∂x

)
= 0.

This motivates the general definition of holomorphy.

Definition 15.2. The Cauchy-Riemann equation is the equation

∂f = 0.

If f : Cn → C solves the Cauchy-Riemann equation, then f is said to be a holomorphic
function of several complex variables. If f = (f1, . . . , fm) is a function Cn → Cm such that
each fj is holomorphic, then f itself is said to be holomorphic.
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It is easy to check that the composite of holomorphic functions is holomorphic.
Recall that the implicit function theorem guarantees that a Cr relation between Rn

and Rm that “passes the vertical hyperplane test” is actually the graph of a Cr function
Rn → Rm. In particular, this holds if r =∞, but demanding holomorphy of the function is
actually a much stronger condition, so we must check that it holds.

Theorem 15.3 (implicit function theorem). Let U be a neighborhood of (w0, z0) ∈ Cm×Cn,
and let f : U → Cm be holomorphic. Suppose that f(w0, z0) = 0 and det(∂fj/∂wk)

m
j,k=1 6= 0.

Then there is a unique holomorphic function g : Cn → Cm such that f(g(z), z) = 0 and
g(z0) = w0.

Proof. By replacing C with R2, we can apply the classical implicit function theorem. To do
this, we write f = u+ iv and consider the Jacobian

∂(u, v)

∂(x, y)
=

[
Re ∂f − Im ∂f
Im ∂f Re ∂f.

]
One easily checks that the determinant of this matrix is | det(∂fj/∂wk)|mj,k=1 which is nonzero.
This gives a function g with f(g(z), z) = 0.

To prove holomorphy, we apply ∂. This is

∂kfj(g(z), z) =
∑
`

∂w`fj∂g`(z)

by the chain rule, using that ∂f = 0. We have ∂kfj(g(z), z) = 0, so by linear algebra,
∂g` = 0. So g is holomorphic.

Corollary 15.4 (inverse function theorem). Let z0 ∈ Cm and f : Cm → Cm be a holomor-
phic function whose Jacobian does not vanish at z0. Then there is a neighborhood U 3 z0

such that f is a holomorphic diffeomorphism of U into its image.

Recall that if α = (α1, . . . , αn) is a multiindex, then the differential form dxα is given by

dxα =
n∧
j=1

dxαj .

Definition 15.5. A differential form ω is type (p, q) if it can be written

ω =
∑
|α|=p

∑
|β|=q

fα,βdzαdzβ.

For each function space F , we let Fp,q denote the space of differential forms of type (p, q)
over F .
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15.2 Basic properties

Theorem 15.6 (Hartogs). Let u : Ω→ C be holomorphic in each variable alone; then u is
holomorphic.

Allegedly this theorem is useless (though it comes up in dynamical systems). Its proof
is very difficult, using the Baire category theorem and the Schwarz lemma. However, if we
are allowed to assume that u is continuous, then the proof is almost trivial.

Lemma 15.7. Assume that we are given a sequence uj of uniformly bounded subharmonic
functions, such that lim supj uj is bounded from above. Then the uj are locally uniformly
bounded from above by sup lim supj uj + ε.

Proof. Without loss of generality, we may assume that the uj ≤ 0. Let K be a compact set
with d(K,Ωc) ≥ 3r. Let z ∈ K, ε > 0. Then we can find a n0 such that for any n > n0,∫

|z′−z|<r
un(z′) dz′ ≤ (C +

ε

2
)πr2

by Fatou’s lemma. If δ is small enough and |w − z| < δ, then

π(r + δ)2un(w) ≤
∫
|z′−z|≤r+δ

un(z′) dz′ ≤
∫
|z′−z|<δ

un(z′) dz′ ≤ (C + ε/2)πr2

for n large enough. Therefore

un(w) ≤ (C + ε/2)

(
r + δ

r

)2

≤ C + ε

for δ small enough. This does not depend on z, w.
Cover K by discs D(z, δ), so reduce to a finite subcover to find a uniform δ.

Definition 15.8. A polydisk in Cn is a set D of the form

D =
n∏
j=1

Dj

where each Dj ⊂ C is an open disk. The distinguished boundary ∂0D is the set

∂0D =
n∏
j=1

∂Dj.

If u : D → Cm is a continuous function which is holomorphic on D, we simply say u is
holomorphic on D.

Notice that ∂0D is in general a torus (since it is a product of circles) and a very small
subset of ∂D.

By induction on n, one easily proves the following.
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Theorem 15.9 (Cauchy’s integral formula in a polydisk). Let D be a polydisk in Cn and
let u : D → C is holomorphic in each variable separately and continuous on D. Then one
has

u(z) =
1

(2πi)n

∫
∂0D

u(ζ) dζ

(ζ1 − z1) · · · (ζn − zn)
.

Corollary 15.10. Let U ⊆ Cn be an open set and f : U → Cm be a holomorphic function.
Then f ∈ C∞(U), and for every compact set K ⊂ U , every multiindex α, and every open
neighborhood V of K, we have

||∂αu||L∞(K) �K,α ||u||L1(V ).

Proof. Since K is compact, it can be covered by finitely many sets contained in polydiscs
contained in V . Now use Cauchy’s integral formula (the implicit constant arising from the
denominator of the formula, the measures of the distinguished boundary, and the obligatory
factors of 2π).

Corollary 15.11 (Montel). Let (uk)k be a sequence of holomorphic functions on an open
set U ⊆ Cn. If uk → u locally uniformly, then u is holomorphic. On the other hand, if one
has

||uk||L∞(K) �K 1

for K ⊂ U compact, then (uk)k has a locally uniformly convergent subsequence (which, in
particular, has a holomorphic limit).

The proof is the same as in one variable.
We view ∂ as an exterior derivative. For (0, 1)-forms f we have

∂f =
∑
j<k

(∂jfk − ∂kfj)dzj ∧ dzk

and if ∂u = f for some (0, 0)-form u, ∂f = 0.

Theorem 15.12. Let Ω ⊂ Cn be bounded, n > 1, and assume that Cn \ Ω is connected. If
there is a ρ ∈ C4(Cn → R) such that ∂Ω is the zero set of ρ and dρ|∂Ω 6= 0, and there is a
u ∈ C4(Ω) such that ∂u∧ ∂ρ = 0 on ∂Ω, then there is a U ∈ A(Ω)∩C1(Ω) such that U = u
on ∂Ω.

Note that if U exists, then U − u = ρh for some h ∈ C1(Ω), with −∂u = ∂ρh on ∂Ω.
This is what we mean by ∂u ∧ ∂ρ = 0 on ∂Ω, which is hence a necessary condition as well
as sufficient.

Definition 15.13. For ρ as above, the equation ∂u∧∂ρ = 0 is called the tangential Cauchy-
Riemann equation.

Clearly if u is holomorphic then it solves the tangential Cauchy-Riemann equations.
Otherwise, what this condition is saying is that ∂u and ∂ρ are proportional. The intuition
is that if

∑
j tj∂jρ = 0 then

∑
j tj∂ju = 0, and the hypothesis here is that the vector field∑

j tj∂j is tangent (in the sense of the complexified tangent bundle) to ∂Ω. Thus, what the
tangential Cauchy-Riemann equations say is that any section V of the tangent bundle of ∂Ω
which only contain antiholomorphic coordinates has V u = 0, so annihilates u.
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Example 15.14. Take the unit ball B of C2. Here ρ(z) = |z|2 − 1. If V = t1∂1 + t2∂2 then
V ρ(z) = 2t · z. Thus the antiholomorphic vector fields which are tangent to ∂B are elements
of the ideal generated by z2∂1 − z1∂2.

Proof of theorem. We construct U0 ∈ C1(Ω) such that U0 = u on ∂Ω and ∂U0 = O(ρ2) on
∂Ω. By the tangential Cauchy-Riemann equations, we have a h0 ∈ C3 such that ∂u = h0∂ρ
on ∂Ω. Thus ∂u = h0∂ρ + ρh1 for some h1 ∈ C3

0,1. Then ∂(u− h0ρ) = ∂u− h0∂ρ− ∂h0ρ =

ρh1 − ∂h0ρ = ρ(h1 − ∂h0) = ∂ρh2 for h2 ∈ C2
0,1, and 0 = ∂(ρh2) = ∂ρ ∧ h2 + ρ∂h2. Now

∂h2 = 0 on ∂Ω so ∂ρ ∧ h2 = 0 on ∂Ω, i.e. h2 = h3∂ρ+ ρh4 for some h3 ∈ C2 and h4 ∈ C2
0,1.

Now let h5 = −h3/2, then 2∂ρh5 = −h2 +O(ρ), so

∂(u− h0ρ+ h5ρ
2) = ρ(h3∂ρ+ ρh4)− ρ2∂h3/2 + 2ρ∂ρ(−h3/2) = ρ2h4 − ρ2∂h3/2 = O(ρ2).

Thus let U0 = u− h0ρ+ h5ρ
2. So there is an f ∈ C1 such that ∂U0 = ρ2f .

Now let F = ρ2f on Ω and 0 away from Ω. Then F ∈ C1(C). So there is a v ∈ C1
comp

such that ∂v = F . By continuity, v = 0 on ∂Ω. Let U = U0 − v.

15.3 Plurisubharmonicity and domains of holomorphy

Definition 15.15. Let Ω ⊆ Cn be open, and u : Ω→ [−∞,∞) be a upper-semicontinuous
function. We say u is a plurisubharmonic function or plush function if for every a, b ∈ Cn,
the function z 7→ u(az + b) is subharmonic whenever it is defined.

Lemma 15.16. If u is C2, then u is plush iff the Hessian matrix

λij = ∂i∂jf

is positive-semidefinite everywhere.

Proof. We have 0 ≤ ∆τu(z + τw) = 4∂τ∂τu(z + τw). By the chain rule,

0 ≤ 4∂τ
∑
j

∂ju(z + τw)wj = 4
∑
k,j

∂k∂ju(z + τw)wjwk.

Now divide both sides by 4.

We let P (Ω) denote the set of plush functions on Ω. It is easy to see from this characteri-
zation that for any holomorphic function f , log |f | ∈ P (Ω). A tensor product of subharmonic
functions, u⊗ v(z, w) = u(z)v(w) is also plush. Any convex function is plush.

Recall that the decreasing sequence of a subharmonic functions converges to a subhar-
monic function. Restricting to a line we see:

Corollary 15.17. The limit of a decreasing sequence of plush functions is plush.

Thus we could define a plush function to be a decreasing limit of smooth plush functions
(where a smooth plush function is one satisfying the Hessian characterization.)
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Corollary 15.18. Let ϕ be a standard mollifier and u plush. Let uε denote the ε-mollification
of u. Then uε decreases to u as ε→ 0 and uε ∈ C∞(Ωε)∩P (Ωε) for Ωε = {z ∈ Ω : d(z, ∂Ω) >
ε}.

The proof is the same as in one dimension (i.e. for subharmonic functions).

Corollary 15.19. Let Ω ⊆ Cn, Ω′ ⊆ Cm, f : Ω → Ω′ a holomorphic mapping, and
u ∈ P (Ω′). Then the pullback f ∗u ∈ P (Ω).

Proof. Without loss of generality we can assume that u is smooth (since the pullback of a
decreasing sequence is decreasing). By the Hessian characterization, the pullback is plush.

Definition 15.20. An open set Ω ⊆ Cn is a domain of holomorphy if there are no Ω1,Ω2 ⊂
Cn, Ω1 is nonempty, Ω1 ⊂ Ω2 ∩ Ω, Ω2 is not contained in Ω1, and for every u ∈ A(Ω) there
is a ũ ∈ A(Ω2) such that u|Ω1 = u1|Ω1 .

For example, a polydisk D =
∏

j Dj is a domain of holomorphy because we could always
find fj ∈ A(Dj) which cannot extend to any open set beyond Dj, and then f(z) =

∑
j fj(zj)

cannot be extended to any open set. More generally, a product of domains of holomorphy
is a domain of holomorphy. If n = 1 then every set is a domain of holomorphy, so this is the
distinction between one and many variables.

We choose a function δ : Cn → [0,∞) such that δ(z) > 0 for z 6= 0, δ(tz) = |t|δ(z) for
δ ∈ C. For example, δ(z) = |z|, or δ(z) = maxj |zj|r−1

j for rj > 0. Put

δ(z,Ω) = inf
w∈Ω

δ(z − w).

Recall that for K ⊂ Ω a compact set, the holomorphic hull K̂Ω is defined by the set of
z ∈ Ω such that for every f ∈ A(Ω), |f(z)| ≤ ||f ||L∞(K).

Lemma 15.21. Suppose Ω is a domain of holomorphy, f ∈ A(Ω), and K compactly con-
tained in Ω. If for every z ∈ K,

|f(z)| ≤ δ(z,Cn \ Ω),

then this estimate is also true for z ∈ K̂Ω, the holomorphic hull of K. In particular,

f(z) = inf
w∈C\Ω
z∈K

δ(z − w) = inf
w∈C\Ω
z∈K̂ω

δ(z − w).

Proof. For D = {|zj| < rj} a polydisc, let

∆D
Ω (z) = sup

z+rD⊆Ω
r = δ(z,Cn \ Ω)

where δ(z) = maxj |zj|r−1
j .

Suppose f ∈ A(Ω) and |f(z)| ≤ ∆D
Ω (z) for z ∈ K. We claim that for each ζ ∈ K̂Ω and

u ∈ A(Ω),

u(z) =
∑
α

(z − ζ)α

α!
∂αu(ζ)
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on ζ + |f(ζ)|D. Since Ω is a domain of holomorphy, this Taylor series cannot converge on
a large enough polydisc, so |f(ζ)| ≤ ∆D

Ω (z), which proves the claim in case Ω itself is a
polydisc.

To prove the claim, let Lt = {z ∈ Ω : ∃w ∈ K |zj − wj| ≤ trj|f(w)|}. If t < 1, then Lt is
compact. In fact, if {zk}j is a sequence in Lt then there is a sequence of wk witnessing that
zk ∈ Lt. Since K is compact we can choose a limit w of the wk. Thus for k large,

|zkj − wj| ≤ trj|f(w)|+ ε.

Taking ε small, we see that the zk lie in a compact set in K since |zkj − wkj | ≤ ∆D
Ω (w), so

have a limit z ∈ K.
Let Mt = ||u||L∞(Lt). By the Cauchy inequality applied to the polydisc ζ + |f(ζ)|D,

|∂αu(w)|t|α| r
α

α!
|f(w)||α| ≤Mt.

Let F (ζ) = ∂αu(ζ)t|α|rα(α!)−1f(ζ)|α|. Then F is holomorphic and |F (ζ)| ≤ Mt for ζ ∈ K.
So by the definition of K̂Ω, ||F ||L∞(K̂Ω) ≤Mt. Therefore

|∂αu(ζ)|
α!

≤Mtt
|α|rα|f(ζ)||α|

so if |zj − ζj| ≤ trj|f(ζ)| then the Taylor series converges.
The above argument proves the lemma when δ(z) = maxj |zj|r−1

j . The general δ satisfies

δ(z,Cn \ Ω) = sup{r ∈ R : ∀w ∈ C δ(w) ≤ 1 =⇒ ∀a ∈ B(0, r) z + aw ∈ Ω}.

Thus δ(z,Cn \ Ω) = infδ(w)≤1 δw(z,Cn \ Ω) where δw(z,Cn \ Ω) = sup∀a z∈aw∈Ω r where a
ranges over B(0, r). Take w = (1, 0, . . . , 0) and Dk = {z : |z1| < 1, j 6= 1 =⇒ |zj| < 1/k}.
Thus ∆Dk

Ω (z)→ δw(z,Cn \Ω) as k →∞. Moreover ∆
Dk+1

Ω (z) ≥ ∆Dk
Ω (z) so by Dini’s theorem

the convergence of the ∆Dk
Ω is uniform.

If |f(z)| ≤ δw(z,Cn \ Ω) then |f(z)| ≤ (1 + ε)∆Dk
Ω (z) for k large enough and z ∈ K. By

the lemma, |f(z)| ≤ (1 + ε)∆Dk
Ω (z) and z ∈ K̂Ω. By Dini’s theorem again one has

|f(z)| ≤ δw(z,Cn \ Ω).

Take the infimum over w of both sides. So |f(z)| ≤ δ(z,Cn \ Ω) even for “weird” choices of
δ.

Theorem 15.22. The following are equivalent:

1. Ω is a domain of holomorphy.

2. For every compact subset K of Ω, the holomorphic hull K̂Ω is compactly contained in
Ω, and for every f ∈ A(Ω),

sup
K

|f(z)|
δ(z,Cn \ Ω)

= sup
K̂Ω

|f(z)|
δ(z,Cn \ Ω)

.
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3. For every compact subset K of Ω, the holomorphic hull K̂Ω is compactly contained in
Ω.

4. There is a f ∈ A(Ω) which does not extend to any larger set.

Proof. Obviously 2 implies 3 and 4 implies 1. By the lemma above, 1 implies 2. So we just
need to show 3 implies 4.

Let {Kj} a compact exhaustion of Ω (so for any compact L ⊂ Ω and every j large enough
L ⊆ Kj). Define Dζ = {ζ}+ rD for D = {|zj| < rj} and r = sup{ζ}+ρD⊂Ω ρ.

Let M be the set of rational points of Ω; then we choose a sequence of ζj ∈ M so that
every element of M appears infinitely often. We also choose a sequence of zj ∈ Dζj such that
zj /∈ Kj; this is possible because Dζj touches ∂Ω but Kj does not because it is compact.

By (3), there is a fj ∈ A(Ω) such that fj(zj) = 1 and ||fj||L∞(Kj) < 1. Replacing fj by a
power of fj, we can assume without loss of generality that ||fj|L∞(Kj) < 2−j.

Now let
f(z) =

∏
j

(1− fj(z))j.

To see that this product converges we just have to show convergence in any compact set L,
and we can assume without loss of generality that there is a J such that L = KJ . For j > J
we have |fj(z)| < 2−j and since we only care about the tail we can assume J = 1. Then

log f(z) =
∑
j

j| log(1− fj(z))| ≤
∑
j

j|fj(z)| ≤
∑
j

j2−j <∞.

Therefore convergence is locally uniform so f ∈ A(Ω).
For every Dζj there is a wN such that for every |α| ≤ N , ∂αf(zN) = 0. Therefore f has

a zero of order N in Dζj . In particular, the zeroes of f have higher and higher order as we
approach ∂Ω. Therefore if f is defined at a point z of ∂Ω then z is an infinite-order zero of
f . So f = 0. But f is nonzero so this is a contradiction.

Example 15.23. As a counterexample, notice that if Ω = B(0, 3)\B(0, 1) and K = ∂B(0, 2)
then K̂Ω = B(0, 2) \B(0, 1) by Hartogs’ theorem and the maximum principle for n ≥ 2. This
is not a compact subset of Ω, so Ω is not a domain of holomorphy.

Corollary 15.24. If Ω is convex then Ω is a domain of holomorphy.

Proof. Recall that K̂Ω is contained in the convex hull of K, which is a compact subset of
Ω.

Corollary 15.25. If Ωα are domains of holomorphy then the interior of
⋂
α Ωα is a domain

of holomorphy.

Proof. Let K ⊂ Ω be a compact set. Then K̂Ω is a compact subset of K̂Ωα for every α, in
particular of the compact set

⋂
α K̂Ωα , which is a compact subset of Ω.

Corollary 15.26. Let Ω be a domain of holomorphy, f1, . . . , fN ∈ A(Ω). Then

Ωf = {z ∈ Ω : |fj(z)| < 1}

is a domain of holomorphy.
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Proof. Let K be a compact subset of Ωf . Then by compactness, there is a r < 1 such that

K ⊂ {z ∈ Ω : |fj(z)| < r}. Thus for any z ∈ K̂Ωf , |fj(z)| ≤ r. Moreover

K̂Ωf ⊆ K̂Ω ⊂ {|fj| ≤ r} ⊆ Ωf .

Therefore K̂Ωf is a compact subset of Ωf .

Corollary 15.27. Let u : Ω→ Cm be a holomorphic transformation, Ω′ ⊆ Cm a domain of
holomorphy. Then the pullback u−1(Ω′) is a domain of holomorphy.

We now relate domains of holomorphy to plurisubharmonicity.

Theorem 15.28. If Ω is a domain of holomorphy and δ as above, then z 7→ − log δ(z,Cn\Ω)
is a continuous plurisubharmonic function.

Proof. For z0 ∈ Ω, w ∈ Cn, take D = {z0 + τw : τ ∈ C, |τ | ≤ r}. If r is small enough then
D ⊆ Ω. Let f be a polynomial in τ and − log δ(z0 + τw,CnΩ) ≤ Re f(τ) for every |τ | = r.
We must show this is true for |τ | < r as well.

Let F be a polynomial on Cn such that F (z0 + τw) = f(τ). Then

|e−F (z)| ≤ δ(z,Cn \ Ω)

for z ∈ ∂D, hence for z ∈ ∂̂DΩ, in particular for z ∈ D. Thus the claim holds for |τ | < r.

In fact the converse of this result holds, using Hormander L2-estimates with plush weights
on Ω.

Definition 15.29. Let K ⊂ Ω be a compact set. The plurisubharmonic hull

K̂p
Ω = {z ∈ Ω : ∀u ∈ P (Ω) u(z) ≤ sup

K
u.}

If K = K̂p
Ω, we say that K is plurisubharmonically convex .

Now if f ∈ A(Ω) we have log |f | ∈ P (Ω), so we are testing by fewer functions that in the
case of the analytic hull K̂Ω. Thus K̂p

Ω ⊆ K̂Ω.

Theorem 15.30. The following are equivalent:

1. z 7→ − log δ(z,Cn \ Ω) is plush.

2. There is a u ∈ P (Ω) such that for every c ∈ R, Ωc = {z ∈ Ω : u(z) < c} is Ω-
precompact.

3. For every K ⊂ Ω compact, K̂p
Ω is compact in Ω.

Definition 15.31. Ω is pseudoconvex if one (and hence) all of the above conditions hold.
The function u appearing in (2) is called a plurisubharmonic exhaustion function.

If Ω is a domain of holomorphy, then Ω is pseudoconvex.
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Proof of theorem. To see 1 implies 2, let u(z) = − log δ(z,Cn \Ω)+ |z|2. This is clearly plush
and blows up at the boundary. So it is a plush exhaustion function.

To see 2 implies 3, let c = supK u. Then {z ∈ Ω : u(z) ≤ supK u} is clearly compact and
contains K̂p

Ω.
So we just need to prove 3 implies 1. Take z0 ∈ Ω and w ∈ Cn \ 0. We need to show

that for every |τ | = r, if − log(z0 + τw,Cn \ Ω) ≤ Re f(τ) then for every |τ | ≤ r we have
− log(z0 + τw,Cn \ Ω).

If |τ | = r then δ(z0 + τw,Cn \ Ω) ≥ |e−f(τ)|. Let a ∈ Cn be such that δ(a) < 1. Let
Fλ(τ) = z0 + τw + λze−f(t) and let Dλ = Fλ(D(0, r)) and Λ = {λ ∈ [0, 1] : Dλ ⊆ Ω}. We
must show Λ = [0, 1] by showing that Λ is clopen and nonempty.

If λ ∈ Λ and we perturb λ, then we do not move Dλ by much, so it remains in the open
set Ω. Therefore Λ is open. Moreover, 0 ∈ Λ by assumption 3, so Λ is nonempty.

Let K = {z0 + τw + λae−f(τ) : |τ | = r, λ ∈ [0, 1]}. Then K is Ω-compact since by
assumption 3, δ(z0 + τw,Cn \ Ω) ≥ |e−f(τ)|. Since |a| < 1 we have |aλe−f(τ)| < 1 whence
δ(z0 + τw + λae−f(t)) > 0. Thus the function

τ 7→ u(z0 + τw + aλe−f(τ)

is subharmonic near |τ | ≤ r. Thus

u(z0 + τw + λae−f(τ)) ≤ sup
K
u

for |τ | ≤ r, by the maximum principle, since K contains the boundary of K̂p
Ω. Thus Dλ ⊆ K̂p

Ω.

If we have a sequence of λj ∈ Λ, say λj → λ0 ∈ [0, 1], then the Dλj ⊆ K̂p
Ω, giving

a continuous family of closed sets which converge to a closed set Dλ0 . So Dλ0 ⊆ K̂p
Ω, so

λ0 ∈ Λ. So Λ is closed, which proves the theorem.

Corollary 15.32. If (Ωα)α is a family of pseudoconvex domains then the interior Ω of
⋂
α Ωα

is pseudoconvex.

Proof. One has

δ(z,Cn \ Ω) = δ

(
z,Cn \

⋂
α

Ωα

)
inf
α
δ(z,Cn\α).

Taking − log of both sides we arrive at

− log δ(z,Cn \ Ω) = sup
α
− log δ(z,Cn \ Ωα)

and the right-hand side is plush since the supremum of plush functions is plush.

Corollary 15.33. Ω is pseudoconvex if and only if for every z ∈ Ω̂ there is a neighborhood
ω 3 z such that Ω ∩ ω is pseudoconvex.

Proof. If Ω is pseudoconvex, let ω be a convex neighborhood of z. So ω is pseudoconvex;
use the previous corollary.

For the converse, notice that this is trivial if z ∈ Ω by (3) of the above theorem. If
z0 ∈ ∂Ω and ω 3 z0 we notice that δ(z,Cn \ Ω) = δ(z,Cn \ (Ω ∩ ω)) if |z − z0| is small.
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Thus the function z 7→ − log δ(z,Cn \Ω) is plush near z0. But plurisubharmonicity is a local
property so the function is plush on a neighborhood of ∂Ω, i.e. there is a closed set F ⊂ Ω
such that z 7→ − log δ(z,Cn \ Ω) is plush on Ω \ C.

Let
Φ(r) = max

|ζ|≤r
ζ∈F

− log δ(ζ,Cn \ Ω)

so Φ is increasing. Now let Φ1 be a convex increasing function such that Φ1 ≥ Φ. So we
define ϕ(z) = Φ1(|z|). So ϕ is a plush function and we can put

u(z) = max(ϕ(z),− log δ(z,Cn \ Ω))

which is a supremum of plush functions, hence plush. Clearly u satisfies (2).

So pseudoconvexity is a local property.

Theorem 15.34. Let ρ ∈ C2(Cn) with dρ|ρ=0 = 0 and let Ω = {z ∈ C : ρ(z) < 0}. Then Ω
is pseudoconvex if and only if for every z ∈ ∂Ω, w ∈ Cn such that

∑
j ∂jρ(z)wj = 0 we have

n∑
j,k=1

∂j∂kρ(z)wjwk ≥ 0.

Definition 15.35. If Ω satisfies the hypotheses of Theorem 15.34 and is pseudoconvex then
Ω satisfies the Levi condition.

Example 15.36. Let Ω = {z ∈ C2 : |z1|2 + 2 Im z2 < 0}. Then

ρ(z) = |z1|2 + 2 Im z1.

Calculating, we see that

∂∂ρ =

[
1 0
0 0

]
so Ω satisfies the strict Levi condition (where ≥ is replaced with >). In this case, for any
z0 ∈ ∂Ω there is a U ∈ A(Ω) which has a singularity at z0, so U does not extend beyond Ω.
In fact, we put

U(z) = (z1a)− iz2 − |a|2/2 + ib)−1

where a ∈ C, b ∈ R. We put z0 = (a, b− i|a|2/2), then U has a singularity at z0. However,
as we will prove in a later theorem, any function on C2 \ Ω admits an analytic continuation
to Ω.

For this example, the tangential Cauchy-Riemann equation is (∂1 + iz1∂2)u(z) = 0. That
tangential Cauchy-Riemann operator, viewed as an operator on a 3-dimensional manifold
(since ∂Ω is a 3-dimensional manifold) was used by Levi to disprove the version of the Cauchy-
Kovaleskai theorem for smooth (rather than analytic) functions because for the generic f ∈
C∞(∂Ω) we do not have Pu = f .
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Proof of Theorem 15.34. First, a one-line lemma: Let ρ1 = hρ, ρ > 0, h ∈ C2 with h > 0.
Then if ρ satisfies the Levi condition then ρ1 does as well. So we can replace the ρ in the
hypotheses in theorem with any ρ satisfying the same conditions, and we willl.

To prove that if Ω is pseudoconvex with a C2 boundary then the Levi condition holds,
we let ρ(z) = − infw/∈Ω |z − w| for z ∈ Ω and ρ(z) = infw∈Ω |z − w| for z /∈ Ω. Thus ρ(z) is
the “signed distance” from z to ∂Ω. If z /∈ ∂Ω, we have

z = w + ρ(z)n(w)

for a minimizer w ∈ ∂Ω (which exists since ∂Ω is closed) and n the unit normal. Since Ω
has a C2-boundary, n is a C1 function of the element w′ of Rk where k is the dimension of
∂Ω as a real manifold. Let f(w′) = w. Then

F (z, w′, ρ(z)) = z − (f(w′), w′)− ρ(z)
(∇f(w′), 1)√
|∇f(w′)|2 + 1

and F is C1. By rotating the manifold ∂Ω so that the tangent plane near w is horizontal
and translate so w = 0, i.e. w′ = 0, f(0) = 0, ∇f(0) = 0. So

∂F

∂(w′, ρ(z))
(z0, 0, ρ(z0)) =

[
∂F
∂w′

∂F
∂ρ

]
=

[
I +O(ρ(z0)) 0
O(ρ(z0)) −1

]
which is invertible if ρ(z0) is small. Therefore we can use the implicit function theorem to
see that ρ is well-defined and C1. We now implicitly differentiate x = y + ρn to see that

ej = ∂j(y
′(x) + ρ(x)

(
y′(x) +

−∇f(y′(x))√
1 + |∇f(y′(x))|

, f(y′) + ρ(1 +O(y′)2)

)
which evaluates at x = x0, y′ = 0 to show that

δNj = ∂jρ(x0).

Rotating back to the original coordinate frame,

∇ρ(x) = n(y(x))

whenever x is close to ∂Ω. Therefore ∇ρ ∈ C1 so ρ ∈ C2.
Now for z ∈ Ω and the standard δ (namely δ(z, w) = |z−w|) we have ρ(z) = −δ(z,Cn\Ω).

Then −δ = ρ so δ ∈ C2 whence

−∂j∂k log δ = δ−2∂jδ∂kδ − δ−1∂j∂kδ

so it follows that ∑
j,k

δ−1∂jδwj∂kδwk − ∂j∂kδwjwk ≥ 0.

We know that ∂jρ(z0)wj = 0 for z0 ∈ ∂Ω (hypothesis of the Levi condition) so∑
j

∂jρ(z)wj = O(|z − z0|).
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Taking z → z0, ∑
j,k

∂j∂kρwjwk ≥ 0

(conclusion of the Levi condition).
We prove the converse by contradiction. Assume that − log δ(z,Cn \ Ω) is not plush in

z, in any neighborhood of ∂Ω. Then ∂∂ log(z + τw,Cn \Ω) > 0 for some z close to ∂Ω. We
will expand this function in a Taylor series in τ . In fact,

log δ(z + τw,Cn \ Ω) = log δ(z,Cn \ Ω) + Re(Aτ) + Re(Bτ 2) + C|τ |2 + o(|τ |2)

for some A,B ∈ C and C > 0.
Now let z(τ) = z + τw + aeAτ+Bτ2

for some a ∈ C. Then

δ(z(τ),Cn \ Ω) ≥ δ(z + τw,Cn \ Ω)− δ(a)|eAτ+Bτ2|
≥ δ(a)(eC|τ |

2/2 − 1)|eAτ+Bτ2 | ∼ |τ |2

for |τ | small enough. Choose a so that δ(a) = d(z,Cn \ Ω). Then z(0) = z + a ∈ ∂Ω. Since
the function looks like |τ |2 we have

∂τδ(z(τ),Cn \ Ω)|τ=0 = 0

∂2
τ δ(z(τ),Cn \ Ω)|τ=0 > 0.

By the chain rule,

0 = ∂τδ(z(τ),Cn \ Ω)|τ=0 = −
∑
j

∂jρz(0)z′j(0)

0 < ∂2
τ δ(z(τ),Cn \ Ω)|τ=0 = −

∑
j,k

∂j∂kρz
′
j(0)z′k(0).

Since ρ < 0, this contradicts the Levi condition.

We will not bother to prove the following theorem, but it is true. The proof uses the
theory of Hormander L2 estimates on complex manifolds with boundary, which is technically
complicated but not very interesting.

Theorem 15.37 (Levi problem). If Ω is pseudoconvex then Ω is a domain of holomorphy.

Theorem 15.38. Assume that ω is a neighborhood of z0 and ρ ∈ C4(ω), ρ(z0) = 0, dρ(z0) =
0. Suppose that there is a w ∈ Cn such that∑

j,k

∂j∂kρ(z0)wjwk < 0

and ∑
j

∂jρ(z0)wj = 0.
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Then there is an ω′ ⊆ ω, z0 ∈ ω′, such that for every u ∈ C4(ω′) such that for every z ∈ ω′,
ρ(z) = 0 implies

∂u ∧ ∂ρ(z) = 0.

Let ω′+ = {z ∈ ω′ : ρ(z) > 0}. Then there is a function U defined on ω′ such that if ρ(z) = 0
then U(z) = u(z), and such that U ∈ A(ω′+).

Proof. Write z = (z1, z
′, zn). There is an affine change of coordinates such that

ρ(z) = Im zn + A11|z1|2 +O(|z1|3) +O(|z′|2)

for some A11 < 0. In particular, we can find δ, ε > 0 such that

ω′ = {z ∈ Cn : |z1| < δ, |z′|+ |zn| < ε} ⊆ ω

satisfies ρ(z) < 0 if |z1| = δ, z ∈ ω′, and also such that

∂1∂1ρ < 0

on ω′. Now the set of z1 ∈ C such that |z′|+|zn| < ε implies ρ(z) < 0 is connected: otherwise,
ρ would have a local minimum in the second connected component, yet ∆ρ < 0 so this is
impossible.

Lemma 15.39. For every f ∈ Ck
(0,1)(ω

′) such that f |ω′\ω′+ = 0, k ≥ 1, ∂f = 0, there is a

v ∈ Ck(ω′) such that ∂v = f and v|ω′\ω′+ = 0.

Proof. We define

v(z) =
1

2πi

∫
|z1|<δ

f1(τ, z′)

τ − z1

dτ ∧ dτ

so ∂v = f . In particular v is analytic whenever ρ ≤ 0. We claim v = 0 on ω′ \ ω′+. Near the

boundary (except for the top) of ω′, ∂v = 0, and v = 0 at the bottom, so v = 0 near the
bottom. The set of points where ρ < 0 is connected, so v = 0 there.

Let v be as in the lemma. Let U0 ∈ C2(ω′) be such that ∂U0 = O(ρ2) and U0|ρ=0 = u|ρ=0.
Then let U = U0 + v. So ∂U = ∂U0 + ∂v, ∂v = −∂U0, and v|ω′\ω′+ = 0 so we’re done.

15.4 Hormander L2 estimates

We want to use the method of a priori estimates to show that ∂u = f has a solution, but
the Hilbert space L2(Cn) contains no holomorphic functions except 0. Therefore we must
weight the inner product to apply Hilbert space theory. Fix Ω ⊆ Cn open. We let λ denote
Lebesgue measure.

Definition 15.40. Let ϕ ∈ C2(Ω). We say that ϕ is a strictly plurisubharmonic function
or simply that ϕ is strictly plush if

inf
t∈Cn\0

∑
j

∑
k ∂j∂kϕ(z)tjtk∑

j |tj|2
> 0.
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Definition 15.41. Let ϕ be a strictly plush function on Ω. We define the weighted inner
product with strictly plush weight ϕ to be the inner product (·, ·)ϕ of the Hilbert space L2(ϕ)
corresponding to the Borel measure e−ϕ dλ on Ω.

In other words,

(f, g)ϕ =

∫
Ω

f(z)g(z)e−ϕ(z) dz.

To motivate this definition, notice that∫
|u|2e−ϕ =

∫
e2 log |u|−ϕ

so we must have ϕ > 2 log |u| at infinity. But log |u| is subharmonic, so the point is that ϕ
must have an especially strong form of subharmonicity for this to work on as many holomor-
phic functions as possible. This leads us to consider ϕ as a plush function.

Suppose that we have solved the equation ∂u = f , for f : Ω→ Cn a good function. Then
for f to be the “gradient” of u with respect to ∂, it must be the case that

∂jfk = ∂kfj

since u is smooth and so has equality of mixed partials. We call this condition the Cauchy-
Riemann constraint equation. One could view it as the statement that the 1-form du =∑

k fj dxj is closed. Of course, du is an exact form, hence closed.

Theorem 15.42 (Hormander’s estimates). Let ϕ be strictly plush and let

κ(z) = inf
t∈Cn\0

∑
j

∑
k ∂j∂kϕ(z)tjtk∑

j |tj|2

witness that ϕ is strictly plush. Assume that f ∈ L2(ϕ + log κ,Ω → Cn) satisfies the
Cauchy-Riemann constraints ∂jfk = ∂kfj. Then there is a u ∈ L2

ϕ such that ∂ju = fj and

||u||L2(ϕ,Ω→C) ≤ ||f ||L2(ϕ+log κ,Ω→Cn).

Before proving the theorem, we need the notion of weak solution for the operator ∂. We
introduce the differential operators

δj = ∂j − (∂jϕ).

If u is a smooth solution to the equation ∂u = f and g is smooth, then

(δjg, u)ϕ =

∫
Ω

∂gue−ϕ −
∫

Ω

∂jϕgue
−ϕ = (g, fj)ϕ.

In other words, ∂
∗
j = δj.

For functions Ω→ Cn we define

(g, h)ϕ =
∑
j

(gj, hj)ϕ.
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Proof of the Hormander estimates. Fix a convex function φ ≥ 0 such that

φ(z) ≥ |z| log κ(z),

which is possible because κ > 0. Then for any ε > 0, we have log κ ≤ εφ on |z| > 1/ε. Thus∫
|z|>1/ε

|f |2e−ϕ−εφ ≤
∫
|z|>1/ε

|f |2e−ϕ−log κ <∞,

and the set {|z| ≤ 1/ε} is no problem for integrability, so f ∈ L2
ϕ+εφ. Since φ is convex, it

is plush, so ϕε = ϕ + εφ is strictly plush. Taking weakstar limits as ε → 0, we can assume
that f ∈ L2(ϕ).

Fix g ∈ C∞c (Ω→ Cn). Then

(δjgj, δkgk)ϕ = −(∂jδkgj, gk)ϕ

= −(δk∂zjgj, gk)ϕ − ([∂j, δk]gj, gk)ϕ

= (∂jgj, ∂kgk)ϕ + (∂j∂kϕgj, gk)ϕ

so, summing both sides over j, k,

(δg, δg)ϕ +
1

2

∑
j 6=k

||∂jgk − ∂kgj||2ϕ =
∑
j

||∂jg||2ϕ +
∑
jk

(gj∂j∂kϕ, gk).

By the Cauchy-Schwartz inequality,

(g, f)2
ϕ = (gκ, f)2

ϕ+log κ ≤ ||gκ||ϕ+log κ||f ||ϕ+log κ

and

||gκ||ϕ+log κ = inf
t6=0
||t||−2

∑
jk

∫
Ω

gge−ϕ∂j∂kϕtjtk ≤
∑
jk

∫
Ω

gge−ϕ∂j∂kϕ

≤
∑
j

||∂jg||2ϕ +
∑
jk

(gj∂j∂kϕ, gk)

In conclusion,

(g, f)2
ϕ ≤ ||δg||2ϕ||f ||2ϕ+log κ +

1

2

∑
j 6=k

||∂jgk − ∂kgj||2ϕ||f ||2ϕ+log κ.

Let N be the subspace of L2(ϕ,Ω → Cn) consisting of g which satisfy the Cauchy-
Riemann constraints. If h ∈ N⊥ (with respect to (·, ·)ϕ) and ψ is a test function, then
∂ψ ∈ N , so 0 = (h, ∂ψ)ϕ = (δh, ψ)ϕ. But ψ was arbitrary, so δh = 0.

Let P : L2(ϕ,Ω→ Cn)→ N be the canonical projection. Then

|(g, f)ϕ| = |(Pg, f)ϕ| ≤ ||f ||2ϕ+log κ||δg||ϕ.

Let us define the space D of elements of L2(ϕ,Ω→ Cn) of the form δg for some g ∈ L2(ϕ),
and define T ∈ D∗ by T (δg) = (g, f)ϕ. Then ||T || ≤ ||f ||ϕ+log κ < ∞. So by the Hanh-
Banach theorem, T admits a linear extension T̃ to L2(ϕ,Ω → Cn). Then T̃ has a Riesz
representation, say u, which completes the proof.
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Chapter 16

Multivariable holomorphic functional
calculus

This chapter follows Hormander’s SCV book, Chapter III.

16.1 The Gelfand transform

Let B be an abelian, unital Banach algebra. One of the fundamental problems of the theory
of such algebras is to consider to what extent that B can be approximated by algebras of
the form C(K), for K a compact Hausdorff space.

Definition 16.1. A Banach algebra representation of B on K is a continuous morphism of
algebras B → C(K).

To classify representations, we consider the space of characters on B.

Definition 16.2. A character or multiplicative functional on B is a continuous morphism of
algebras m : B → C which is not identically 0. The space of all characters on B is denoted
MB.

For each f ∈ B, the function f̂ defined on characters by f̂(m) = m(f) is the Gelfand
transform of f . We give the space MB the weakstar topology, namely the weakest topology
such that for each f ∈ B, the Gelfand transform f̂ is continuous. The resulting map
B → C(MB) is called the Gelfand representation of f .

By the Banach-Alaoglu theorem, MB is a compact Hausdorff space.
The Gelfand representation is universal among representations of B.

Lemma 16.3. If T : B → C(K) is a representation of B, then there is a map ϕ so that for
every f ∈ B,

Tf = f̂ ◦ ϕ.

Proof. Recall that Te is idempotent, so its image (Te)(K) consists only of 0 or 1. Let K0

be the kernel of Te and K1 be its complement in K. Then {K0, K1} is a partition of K into
compact, open sets. But then for any f ∈ B, Tf = 0 on K0, so we might as well assume
K = K1. Under this assumption, for each x ∈ K, the map f 7→ Tf(x) is a character, which
we denote ϕ(k).
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Definition 16.4. Let f ∈ B. The resolvent function of f is the meromorphic function
Rf : U → B given by

Rf (λ) =
1

f − λe
.

The domain U of the resolvent function of f is called the resolvent set of f . The complement
in B of U of f is called the spectrum of f , denoted σ(f).

In case B is a space of matrices, then the spectrum of f is exactly the set of eigenvalues
of f viewed as a linear operator, since then f solves the eigenvalue equation

f(x) = λx.

Theorem 16.5 (spectral radius theorem). For each f ∈ B, σ(f) = {f̂(m) : m ∈ MB}.
Moreover,

sup
m∈MB

|f̂(m)| = lim
n→∞

||fn||1/n.

The proof of this theorem uses some complex analysis, which we now consider.

Lemma 16.6. Let g ∈ B. If g is invertible, then the mapping

λ 7→ (g − λh)−1

is continuous on the disk D of all λ such that

|λ| < 1

||g−1h||
.

Assume ω ⊆ D is bounded by a finite number of C1 arcs. If ϕ is holomorphic on ω and C1

on ω, then ∫
∂ω

(g − λh)−1ϕ(λ)dλ = 0.

Proof. Let H = g−1h and

I(λ) = g−1

∞∑
n=0

λnHn.

This series converges locally uniformly on D, in fact by definition of D. Also,

I(λ)(g − λh) = I(λ)g(e− λH) = e.

Therefore we can integrate term by term after multiplying by ϕ(λ), and each term is holo-
morphic.

Lemma 16.7. If (e− λf)−1 exists for every |λ| ≤ R, then for each n ≥ 0,

Rn||fn|| ≤ sup
|λ|=R

||(e− λf)−1||.
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Proof. By homotopy invariance and the above lemma, the integral

1

2πi

∫
|λ|=r

(e− λf)−1λ−n−1 dλ

is independent of r if r ≤ R, and if r||f || < 1, then the integral is equal to fn.

Lemma 16.8. For each f ∈ B, σ(f) is nonempty.

Proof. Assume σ(f) is empty. Then (e− λf)−1 exists for every λ ∈ C, and the holomorphic
function

||(e− λf)−1|| ≤ ||f
−1||
|λ|
||(e− λ−1f−1)−1||

is bounded as λ→∞, contradicting Liouville’s theorem.

Corollary 16.9. If B is a field, then B = C.

Proof. By the lemma, for every f ∈ B we can find λ ∈ C such that f − λe is not invertible,
but since B is a field, it follows that f = λe.

Lemma 16.10. If I is a proper ideal of B then there is a m ∈ MB such that m(f) = 0 for
every f ∈ I.

Proof. By Zorn’s lemma, we can find a maximal ideal m ⊇ I. The natural map B → B/m =
C is a character, call it m.

Finally we are ready to prove the spectral radius theorem.

Proof of spectral radius theorem. We first claim that {f̂(m) : m ∈MB} ⊆ σ(f): if λ /∈ σ(f),
then there is a g ∈ B so that g(f −λe) = e, so ĝ(f̂ −λ) = 1. Therefore f̂(m) 6= λ for any m.

Now let
1/R ≤ sup

z∈σ(f)

|z|.

So if |λ| ≤ R, (e− λf)−1 exists by the above lemmata. So(
lim sup
n→∞

Rn||fn||
)1/n

= R lim sup
n→∞

||fn||1/n ≤ 1

and it follows that

lim sup
n→∞

||fn||1/n ≤ 1

R
≤ sup

z∈σ(f)

|z|.

Third, if λ ∈ σ(f), then f−λe is not a unit, so the ideal I = (f−λe) is proper. Therefore
we can find a m ∈ MB which is annihilated by I. Then λ = m(f), so σ(f) ⊆ {f̂(m) : m ∈
MB}. This proves the first assertion of the spectral radius theorem.

Since the Gelfand representation is continuous, there is a C ≥ 1 such that

sup
m∈MB

|f̂(m)| ≤ C||f ||.
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So
sup
m∈MB

|f̂(m)| ≤ C1/n||fn||1/n ≤ C1/n||f ||

implying that
sup
m∈MB

|f̂(m)| ≤ lim inf
n→∞

||fn||1/n.

Therefore by the lemmata

sup
m∈MB

|f̂(m)| ≤ lim inf
n→∞

||fn||1/n ≤ lim sup
n→∞

||fn||1/n ≤ sup
z∈σ(f)

|z| = sup
m∈MB

|f̂(m)|.

This proves the second assertion.

Now we generalize the notion of a spectrum to several complex variables. A version of
the spectral radius theorem holds still.

Definition 16.11. The joint spectrum σ(f1, . . . , fn) is the set of all λ ∈ Cn such that the
ideal

(f1 − λ1e, . . . , fn − λne)
is proper.

Corollary 16.12. For f1, . . . , fn ∈ B,

σ(f1, . . . , fn) = {(f̂1(m), . . . , f̂n(m) : m ∈MB}.

The proof is essentially the same. This generalization of the spectral radius theorem will
allow us to classify the Gelfand representations of finitely generated Banach algebras.

Theorem 16.13. Let B be the Banach algebra generated by f1, . . . , fn. Then the mapping

ϕ : MB → σ(f1, . . . , fn)

m 7→ (f̂1(m), . . . , f̂n(m))

is a homeomorphism. Moreover, σ(f1, . . . , fn) is polynomially convex, and for each f ∈ B,
one can approximate f̂ ◦ ϕ−1 uniformly by polynomials on σ(f1, . . . , fn).

Proof. Since MB carries the weakstar topology, ϕ is continuous, and injective since if p is a
polynomial,

m(p(f1, . . . , fn)) = p(f̂1(m), . . . , f̂n(m))

(and polynomials in the fj are dense in B, by definition of B). By the corollary of the
spectral radius theorem, ϕ is surjective.

To prove the second statement, let K = σ(f1, . . . , fn), z ∈ K̂, and define a map on the
generators by fj 7→ zj. This will extend to a character on all of B if it is continuous; and
indeed

|p(z)| ≤ sup
w∈K
|p(w)| ≤ sup

m∈MB

|m(p(f))| ≤ |p(f)|.

Therefore z ∈ K, proving the second claim. The final claim follows because polynomials are
dense in B.
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16.2 The holomorphic functional calculus

We now show that holomorphic functions can be extended to an (abelian, unital) Banach
algebra B, even in several complex variables.

Theorem 16.14 (holomorphic functional calculus in several complex variables). Let f1, . . . , fn ∈
B and let ϕ be a holomorphic function on a neighborhood of the joint spectrum σ(f1, . . . , fn).
Then there is a g ∈ B such that

ĝ = ϕ(f̂1, . . . , f̂n).

One generally writes g = ϕ(f1, . . . , fn), so we think of ϕ as a function Bn → B.

Lemma 16.15. Let Ω ⊆ Cn be open and contain σ(f1, . . . , fn). Then there is a finitely
generated Banach subalgebra B′ of B such that f1, . . . , fn ∈ B′ and σB′(f1, . . . , fn) ⊆ Ω.

Proof. As B′ increases, σB′(f1, . . . , fn) decreases. So we show that for every z /∈ σ(f1, . . . , fn),
we can find B′ so that z /∈ σB′(f1, . . . , fn). Indeed, we can find fj+n ∈ B so that

e =
n∑
j=1

fj+n(fj − zje).

Now let B′ be the Banach algebra generated by the fj.

Lemma 16.16. Let B′ be as above. Let f1, . . . , fv be the generators of B′, and let π : Cv →
Cn be the projection which annihilates (0, . . . , 0, zn+1, . . . , zv). Then there are polynomials
pk such that for each z ∈ Cv such that for each j, |zj| ≤ ||fj||, if

|pk(z)| ≤ ||pk(f1, . . . , fv)||,

then π(z) ∈ Ω.

Proof. Assume π(z) /∈ σB′(f1, . . . , fn). Then the map fj 7→ zj cannot extend to a character
on B′, so is discontinuous if we were to try to extend it; i.e. there is a p so that

|p(z1, . . . , zv)| ≥ ||p(f1, . . . , fv)||.

This is still true close to z, so use compactness of the closed polydisk

{z ∈ Cv : |zj| ≤ ||fj||}.

Now we come to the theorem that we will use to prove the holomorphic functional cal-
culus.

Theorem 16.17. Let f1, . . . , fn ∈ B and let ϕ be holomorphic in a neighborhood of
σ(f1, . . . , fn). Then there are fn+1, . . . , fN and a holomorphic function Φ on a neighbor-
hood of the polydisk

{z ∈ CN : |zj| ≤ ||fj||}
such that ϕ(f1, . . . , fn) = Φ(f1, . . . , fN).
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Proof. Let Ω be a neighborhood of σ(f1, . . . , fn). By the lemma, we can find fn+1, . . . , fv
and p1, . . . , pµ satisfying certain conditions. Let N = v + µ and fv+k = pk(f1, . . . , fv). The
function ϕ ◦ π is holomorphic in a neighborhood of the compact set of all z ∈ Cv such that
|zj| ≤ ||fj|| and |pk(z)| ≤ ||fk+v||. Therefore by results in several complex variables, we can
find the desired Φ.

Proof of holomorphic functional calculus. Let Φ and fn+1, . . . , fN be as above. By holomor-
phy, we can write

Φ(z) =
∑
α

aαz
α

such that ∑
α

|aα|Rα <∞

where R = (||f1||, . . . , ||fN ||) and z = (z1, . . . , zN). Therefore the series

g =
∑
α

aαf
α

norm-converges. Moreover,

ĝ =
∑
α

aαf̂
α = Φ(f̂1, . . . , f̂N) = ϕ(f̂1, . . . , f̂n).

172



Chapter 17

Algebraic geometry

Throughout this chapter, we assume that all rings are commutative and unital.

17.1 Schemes and varieties

Definition 17.1. A ringed space X = (X,F) consists of a sheaf of rings F on X. If the
stalks of F are all local rings, then we say that X is a locally ringed space.

A morphism of ringed spaces ψ : (X,F)→ (Y,G) consists of a continuous map ψ : X → Y
and for each U ∈ Open(Y ), a morphism of rings ψU : G(U) → F(ψ−1(U)) such that for
every open set V ⊆ U , the diagram

G(V ) F(ψ−1(V ))

G(U) F(ψ−1(U))

ψV

ψU

commutes.
Let (X,F) and (Y,G) be locally ringed spaces. A morphism of locally ringed spaces

ψ : (X,F)→ (Y,G) is a morphism of ringed spaces such that for every x ∈ X, the maximal
ideal m of the stalk Fx is given by m = ψx(n) where n is the maximal ideal of the stalk Gψ(x)

and ψx is the colimit of morphisms ψU as U ranges over the directed set Dψ(x) of all open
sets U 3 ψ(x).

So a morphism of locally ringed spaces is a morphism of ringed spaces, whose domain
and codomain are locally ringed, which preserves the maximal ideals at each stalk.

Definition 17.2. Let R be a ring. Let X be the spectrum of R, equipped with the Zariski
topology. If U = D(f) is a distinguished open set, let F(U) be the localization of R at
R \ D(f). Let F be the induced sheaf. Then SpecR = (X,F) is called the affine scheme
associated to R.

Proposition 17.3. Let R be a ring. The affine scheme SpecR is a locally ringed space, and
R is the ring of global sections of SpecR.
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Definition 17.4. A scheme is a locally ringed space which is locally an affine scheme. A
morphism of schemes is a morphism of locally ringed spaces.

If X is a scheme, then there is a unique morphism X → SpecZ, which is the categorical
dual of the morphisms Z→ R for each ring R appearing in the definition of X.

Definition 17.5. Let S be a scheme. A scheme over S, X, is a scheme X such that there
is a morphism of schemes π : X → S.

Let X and Y be schemes over S, witnessed by morphisms π : X → S and ϕ : Y → S. A
morphism of schemes over S, ψ : X → Y , is a morphism of schemes ψ : X → Y such that
π = ϕ ◦ ψ.

In case S = SpecC, we say that X is a complex scheme.

Notice that if X = (X,F) is a complex scheme and U ⊆ X is an affine subscheme, then
F(U) admits a morphism of rings C→ F(U). This gives rise to a complex algebra structure
on F(U).

Definition 17.6. If X is a complex scheme and every algebra F(U) is finitely generated
over C, we say that X is a complex scheme of finite type.

Definition 17.7. A reduced scheme X = (X,F) is a scheme such that for every open set
U ⊆ X, the ring F(U) has no nilpotents.

Definition 17.8. Let π : X → Y be a morphism of schemes. The diagonal morphism
δπ : X → X ×Y X is the fiber product of the identity X → X with itself induced by π. If
δπ(X) is closed in X ×Y X, we say that π is a separated morphism.

If the unique morphism X → SpecZ is separated, we say that X is a separated scheme.

Definition 17.9. A variety is a reduced, separated complex scheme of finite type.

17.2 Formal power series

Let
∑

α aαz
α be a formal power series on Cn with domain of (absolute) convergence D. Let

B be the set of z such that |aαzα| is uniformly bounded in α. Clearly D ⊆ B.

Lemma 17.10. Assume w ∈ B and U = {z ∈ Cn : |zj| < |wj|}. Then U ⊆ D.

Theorem 17.11. D∗ = {ξ ∈ Rn : (eξ1 , . . . , eξn) ∈ D} is an open, convex set. If ξ ∈ D∗ and
|ηj| ≤ |ξj| then η ∈ D∗. Moreover, z ∈ D if and only if |zj| ≤ eξj for some ξ ∈ D∗.
Proof. D∗ is the interior of B∗. We will show B∗ is convex. There is an M such that ξ, η ∈ B∗
if and only if

|aαeαξ| ≤M

and similarly for eαη. This remains true when we raise both sides to the t or 1 − t power.
Then

|aα|eα(tξ+(1−t)η) ≤M.

Thus tξ + (1− t)η ∈ B∗.
The other claims follow from the definition or are obvious from the lemma.

Definition 17.12. A Reinhardt domain is a set Ω ⊂ Cn such that for every z ∈ Ω and every
θ ∈ Rn, (eiθ1z1, . . . , e

iθnzn) ∈ Ω.
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17.3 Bergman kernels

Suppose Φ is a strictly plush quadratic form on Cn. That is,

Φ(z) = Re〈Az, z〉+ 〈Cz, z〉

where A ∈ Cn×n and C is a positive matrix. (The inner product is antilinear in z, hence
why we needed complex conjugation). Then we define

L2
Φ(Cn) =

{
u :

∫
Cn
|u(z)|2e−2Φ(z) dz <∞

}
.

Thus we can define HΦ(Cn) = L2
Φ(Cn)∩A(Cn). Taking the holomorphic part of a compactly

supported function (which is always possible for smooth functions by the Hormander L2

estimates), we see that HΦ(Cn) is nonempty. HΦ(Cn) is closed, hence a Hilbert space.
It is often useful to have a semiclassical parameter, so we put

||u||2Φ =

∫
Cn
|u|2e−2Φ/h dm.

Putting
uα(z) = e−〈Az,z〉/hzα

we recover an orthonormal basis

fα = C(hn+|α|α!)−1/2uα

of HΦ.
Let

ΠΦ : L2
Φ → HΦ

be the orthogonal projection. Then one can check that

ΠΦu(z) = C

∫
Cn
e2Ψ(z,w)/h−2Φ(w)/hu(w) dm(w),

where Ψ : C2n → C is the unique analytic quadratic function such that

Ψ(z, z) = Φ(z).

Example 17.13. If Φ(z) = |z|2/2 then Ψ(z, w) = 〈z, w〉/2 and

Πu(z) =
1

(πh)n

∫
Cn
e−〈z,w〉/h−|w|

2/hu(w) dm(w).

In quantum mechanics, H is the space of wavefunctions. If g ∈ L∞ is a classical observ-
able, we quantize g by

Tg = ΠgΠ.

In fact, g itself cannot be holomorphic by Liouville’s theorem, but Tg preserves A.
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Definition 17.14. The projection Tg is called the Toeplitz operator of g.

Example 17.15. Let g(z) = zj, u ∈ HΦ+ε|z|2 , where Φ(z) = |z|2/2. Then Tg carries H to
itself, and

Tgu(z) =
1

(hπ)n

∫
Cn
e−〈z,w〉/h−|w|

2/hwju(w) dm(w).

We first see that
wje

−〈z,w〉−|w|2/h = −h∂wje−〈z,w〉−|w|
2/h

and since the integrals converge, we integrate by parts to see that

Tgu(z) =
1

(hπ)n
e−〈z,w〉/h−|w|

2/hh∂wju(w) dm(w) = Π(h∂ju(z)) = h∂ju(z).

That is, multiplication by zj is the same as differentiating in zj. So this is, in fact, a
quantization.

17.4 Quillen’s theorem

Theorem 17.16 (Catlin-d’Angelo-Quillen). Let

f(z, z) =
∑

|α|=|β|=m

cαβz
αzβ

be a bihomogeneous quadratic form on Cn such that f(z, z) > 0 for every z 6= 0. Then there
is a N ∈ N and a polynomial

Pj(z) =
∑
|α|=m

pjαz
α

such that

|z|2Nf(z, z) =
J∑
j=1

|Pj(z)|2.

Quillen developed this theorem to prove the complex Nullstellensatz. It was also used by
Polya for the following theorem.

Theorem 17.17 (Polya). Suppose p is a real homogeneous polynomial on Rn and p(x) > 0
if ∀j xj ≥ 0 and

∑
j xj = 1. Then there is a N ∈ N such that (x1 + · · · + xn)Np(x) has

positive coefficients.

Proof. Write xj = zjzj and put cαβ = 0 for α 6= β, then use Quillen’s theorem.

To prove Quillen’s theorem, we develop the theory of real quadratic forms.
Let q : Cn → R be a quadratic form.

Lemma 17.18. There is a decomposition q = h + ` such that h(iz) = −ih(z) and `(z) =
`(iz).

Definition 17.19. ` is the Levi form of q.

176



Proof. Define Jq(z) = q(iz). Then J2 = 1. Put h = (q − Jq)/2, ` = (q + Jq)/2. Then h
is pluriharmonic in the sense that for any j in any coordinate system, ∂j∂jh(iz) is constant
because h is a quadratic form. Moreover,

∂j∂jh(iz) = −∂j(∂jh(iz)) = ∂j∂jh(iz)

which proves the claim for h.

To prove Quillen’s theorem, let

Pf (z) =
∑

|α|=|β|=m

cαβz
α(h∂)β

be a quantization of f . Then if h = 1/N , Pf carries the space Pm+N of homogeneous
polynomials of degree m+N to itself, as we will prove, and this will prove Quillen’s theorem.

Lemma 17.20. There is a polynomial P such that

f(z, z) =
J∑
j=1

|Pj(z)|2

if and only if A = (cαβ)αβ is a positive-definite matrix.

Note that this is not trivial because A acts on the vector space CK , where K is the set
of partitions of m, which by some combinatorics can be very large!

Proof. For any symmetric matrix A ∈ CK×K we can find wk ∈ CK , λj, j, k ∈ K, such that

A =
∑
j,k

λjwkw
∗
k

by the spectral theorem. Here f is real-valued, so cαβ = cβα whence A is symmetric. Thus
we can use that decomposition.

Let Z = (zα)α∈K . Then

f(z, z) = Z∗AZ =
∑
α∈K

λαZ
∗wαw

∗
αZ

so f(z, z) is the sum over α of the sign of λα times |Pα(z)|2, where

Pα(z) = |λα|1/2w∗αZ = |λα|1/2
∑
β∈K

wβαz
β.

So if A is positive then the λα ≥ 0.
For the converse, just run the same argument in reverse.

177



Example 17.21. Let z ∈ C2,

f(z, z) = |z1|4 + |z2|4 + c|z1|2|z2|2

for some |c| ∈ (0, 2). Then f is a positive quadratic form. There are only 3 partitions of 2,
so the matrix A acts on C3 by

A =

1
c

1

 .
Then A is positive-definite if and only if c > 0, so that is exactly when f is a positive
quadratic form.

Let Pn+M be the space of homogeneous polynomials of degree n+M . Let Φ(z) = |z|2/2
as in the theory of Bergman kernels and T· be the quantization operator.

Lemma 17.22. Let
|z|2Nf(z, z) =

∑
|α|=|β|=N+m

cNαβz
αzβ

be a bihomogeneous form. Let

Pf (z) =
∑

|α|=|β|=m

cαβz
αTzβ .

Then A = (cαβ) is positive if and only if there is a c > 0 such that for every u ∈ Pn+M we
have

〈Pfu, u〉Φ ≥ c||u||Φ

Proof. The orthonormal projection Π : L2 → H is self-adjoint so

T ∗g = Tg.

Moreover, it is easy to check that Pf is self-adjoint, and Pf =
∑

α,β cαβz
α(h∂)β. Then

Pfg(z) =
∑
α,β

cαβz
αΠ(zβg(z))

=
∞∑
L=0

1

(πh)n

∫
Cn

〈z, w〉L

hLL!
f(z, w)g(w)e−|w|

2/h dm(w)

=
∑
L

(hπ)−n
∫
Cn

∑
|µ|=L

zµwµ

µ!h|µ|
f(z, w)g(w)e−|w|

2/2h dm(w).

Assume g ∈ Pm+N . By homogeneity one can only get a nonzero contribution to the integral
when L = N . So

Pfg(z) = (πh)−n
∫
Cn

∑
|µ|=N

zµwµ

µ!h|µ|
f(z, w)g(w)e−|w|

2/h dm(w).
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Let u ∈ Pm+N expand as

u(z) =
∑

|γ|=m+N

uγ(z)zγ.

Then

〈Pfu, u〉 = hN+2m
∑

|α|=|β|=m
|µ|=N

cαβ
(α + µ)!(β + µ)!

µ!
uβ+αuα+µ

= (πh)−nhN+2m
∑

|γ|=|ρ|=N+m

cNργρ!γ!uρuγ

and (cNργρ!γ!) is positive iff A is positive. Since

〈z, z〉N

N !

∑
|α|=|β|=m

cαβz
αzβ =

∑
|α|=|β|=m
|µ|=N

cαβ
µ!
zα+µzβ+µ

we plug this back into 〈Pfu, u〉.

Lemma 17.23. For every δ > 0 and m > 1 there is a ε > 0 such that if |Mh− 1| < ε, then
for every u ∈ PM ,

|| |z|mu||L2
Φ(|z|≤1−δ) ≤ O(h∞)||u||Φ.

Proof. Let
ΠM : L2

Φ → PM
be the orthogonal projection. Now

||ΠM |z|m1|z|≤1/2ΠM ||L2
Φ→L

2
Φ

= O(h∞)

if hM is close to 1. In fact, it is no trouble to reduce to when m = 0 since |z|m < 2−m and
then

||u||2L2
Φ(|z|<1/2) = 〈1|z|<1/2u, u〉Φ = 〈ΠM1|z|<1/2ΠMu, u〉Φ.

We now use Schur’s criterion with p(w) = |w|M . In fact

ΠMu(z) = (πh)n
∫
Cn
〈z, w〉M u(w)

M !hM
e−|w|

2/h dw

so if K is the integral kernel defined by

ΠM1|z|≤1/2ΠM =

∫
M

K(z, w)u(w)e−|w|
2/h dw

we have

K(z, w) = (hπ)−2n

∫
Cn

〈z, ζ〉M

M !hM
1|ζ|<1/2

〈ζ, w〉M

M !hM
e−|ζ|

2/h dζ
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since by Fubini’s theorem the integral kernel of a product of integral operators is the product
of the integral kernels. Thus

|K(z, w)| ≤ (πh)−2n

∫
|ζ|<1/2

|z|M |ζ|2M |w|M

M !hMM !hM
e−|ζ|

2/h dζ

implies∫
Cn
|K(z, w)||w|Me−|w|2/h dw ≤ |z|M

(πh)2M

∫
Cn

∫
|ζ|<1/2

|ζ|2M

M !hM
|w|2M

M !hM
e−|ζ|

2/he−|w|
2/h dζ dw

=: I1I2

where we are thinking of the e−|·|
2/h as a Radon-Nikodym derivative of a certain measure (so

we can use Schur’s criterion on that measure). Using polar coordinates,

I1 ≤
C

M !hM+n

∫ ∞
0

r2M+2n−1e−r
2/h dr

= O

(
1

M !

)∫ ∞
0

tM+n−1e−t dt

≤ O

(
1

M !

)
(M + n− 1)! ≤ O((M + n)n).

Since Mh is close to 1, e(M+m+n−1)t looks like et/h, and if 1 − ρ = Mh then ρ is small. We
recall that log 1/4− 1/4 ≈ −1.6 < 1. So if we take r2 = t,

I2 ≤ C

∫ 1/2

0

r2M+2n−1

M !hM+n
e−r

2/h dr

= C

∫ 1/4

0

tM+m+n−1

M !hM+n
e−t/h dt =

Ceδ/4h

M !hM+n

∫ 1/4

0

(te−t)1/h dt

=
Ceδ/4h

M !hM+n

∫ 1/4

0

e(log t−t)/h dt ≤ C
eδ/4h − 1.5/h

M !hM+n

≤ C
e−1.2/h

M !(1− ρ)−(n+M)M−(n+M)
≤ C

(1 + ρ)n+Me−1.2/h

MM+1/2M−MM−n

≤ O(Mn(1 + ρ)n+M)e−(1−ρ)M ≤ O(e−CM) = O(e−C/h)

by Stirling’s formula.

Lemma 17.24. Let |α| = |β| = m. There are pj ∈ Pm−j such that if

qαβ(z, z) = zαzβ +
n∑
j=1

hjpαβj (z, z)

then zαTzβ = Tqαβ .
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Proof. This is obvious if m = 0. Otherwise, assume that it is true for m, and use the fact
that

Tzαzβ = (h∂z)
βzα = zα(h∂z)

β

m∑
j=1

hj
∑

|µ|=m−j

pαβj zµ(h∂z)
µ

to prove the lemma by induction.

Proof of Quillen’s theorem. By a previous lemma, we have f = Tq where

q(z, z) = f(z, z) +
m∑
j=1

hjpj(z, z)

for some pj ∈ Pm−j which depend on our choice of h. We claim that for some N > 1, h < 1
and every u ∈ Pm+N , there is a c > 0 such that

〈Tqu, u〉Φ ≥ c||u||2Φ.

In fact we take c so that f(z, z) > 2c for 2|z| > 1, which is possible by homogeneity of f . So
if h > 0 is small enough, then

q(z, z) > c

for every z with 2|z| > 1. In particular we have the luxury to choose h so that we can find
N such that N = 1/h. Now Π is self-adjoint and u ∈ H, so

〈Tqu, u〉Φ = 〈ΠqΠu, u〉Φ = 〈qΠu,Πu〉Φ
= 〈qu, u〉Φ ≥ c〈1|z|≥1/2u, u〉Φ − c||u||L2

Φ(|z|<1/2)

= c||1|z|≥1/2u||2L2
Φ(|z|≥1/2) −O(h∞)||u||Φ

≥ c
||u||2Φ

2
.
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Chapter 18

Line bundles over complex varieties

Definition 18.1. An immersion is an injective continuous function.

Definition 18.2. An holomorphic atlas on a topological space M is an open cover (Uα)α
equipped with open immersions τα : Uα → Cn such that whenever Uα ∩Uβ is nonempty, the
mapping

τα ◦ τ−1
β : τβ(Uα ∩ Uβ)→ τα(Uα ∩ Uβ)

is holomorphic.

Definition 18.3. A complex manifold M is a Hausdorff space equipped with a holomorphic
atlas.

Definition 18.4. A function f : M → Cm is a holomorphic function if for every α, f ◦ τ−1 :
τα(Uα)→ C, is holomorphic.

Example 18.5. Let
M = {z ∈ Cn+1 : z2

0 + · · ·+ z2
n = 1}.

Then there is a j such that zj 6= 0. By the implicit function theorem, we can show that M
is a complex manifold. But it is not compact, and in fact has complex codimension 1.

Definition 18.6. Let V be a complex vector space, which the multiplicative group C∗ acts
on by scalar multiplication. Let P(V ) = (V \ 0)/C∗, the complex projective space. Define for
x ∈ P(V ) the equivalence class [x] ∈ P(V ). Define Ωj = {[x] ∈ P(V ) : xj 6= 0}. Then define

τ−1
j ([x]) = (x0x

−1
j , . . . , xj−1x

−1
j , xj+1x

−1
j , . . . , xnx

−1
j ).

Then for z ∈ τj(Ωi ∩ Ωj),

τi ◦ τ−1
j (z) = (z0z

−1
i , . . . , zj−1z

−1
i , z−1

i , zj+1z
−1
i , . . . , zi−1z

−1
i , zi+1z

−1
i , . . . , znz

−1
i ).

Then if V = Cn+1, P(V ) = S2n−1/S1 where S1 acts on S2n−1 by scalars. So P(V ) is a
compact complex manifold.

Example 18.7. Let M = {x ∈ Cn+1 : x2
0 + · · · + x2

n+1 = 0}/C∗, where C∗ acts on Cn+1 by
scalars. By a similar argument as with projective space, M is a compact complex manifold.
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Theorem 18.8. The only holomorphic functions on a compact connected complex manifold
are constant.

Proof. A function would have to attain a maximum since the manifold is compact, and by
the maximum principle if a function attains its maximum on the interior of a connected set
then it is constant there.

18.1 Holomorphic line bundles

Definition 18.9. A holomorphic line bundle is a holomorphic projection of complex mani-
folds π : E → M , such that for every x ∈ M , Ex = {π−1(x)} is isomorphic to C, and that
there is an open set U 3 x and a holomorphic function Θ : π−1(U) → U × C such that
Θ|Ex : Ex → {x} × C is an isomorphism of vector spaces.

We define Θj` = Θj ∩ Θ−1
` whenever Uj ∩ U` is nonempty. Then Θj`(x, ·), x ∈ M , is a

linear map C→ C, so there is a scalar gj`(x) such that Θj`(x, t) = gj`(x)t.

Definition 18.10. The functions gj` : Θj ∩Θ−1
` → C are called transition functions for the

holomorphic line bundle.

We have gj`g`j = 1. In fact, on Uj ∩ Uk ∩ U`, then gj`g`kgkj = 1. On the other hand,
we have a holomorphic line bundle for any family of functions with these compatibility
conditions. Let J be the index set, (j, x, t) ∼ (j′, x, t′) whenever t′ = gj′jt. Then J ×M ×C
projects by ∼ to a holomorphic line bundle E.

Example 18.11. The trivial line bundle is E = M × C.

Example 18.12. The tautological line bundle O(−1) over Pn, the moduli space of all lines
through 0 ∈ Cn+1, sends the line corresponding to each point of Pn to itself. It is defined by

O(−1) = {([x], ξ) ∈ Pn × Cn+1 : ξ ∈ [x]}.

(Here we allow 0 ∈ [x].) We define Θj([x], ξ) = ξj. Then Θj ◦Θ−1
` ([x], ξ) = xjξ/x`. That is,

gj`(x) =
xj
x`
.

Definition 18.13. Let π : E →M be a holomorphic line bundle. A section is a right inverse
of π.

So a section carries x ∈ E to the complex line C × {x}. We denote by C∞(M,E) the
space of smooth sections of π. The space of holomorphic sections is denoted by H0(M,E),
for sheaf-theoretic reasons.

Example 18.14. For the tautological line bundle, let x ∈ Uj. We define a vector space
isomorphism ej : Ex → C that sends a point in [x] to its jth coordinate. This allows us to
express as section s as s(x) = sj(x)ej(x) whenever x ∈ Uj. If x ∈ Uj ∩ U`, then e`(x) =
gj`(x)ej(x) and sj(x)ej(x) = s`(x)e`(x). So sj(x)ej(x) = sj(x)g`j(x)e`(x) = s`(x)e`(x)
whence sj(x)/xj = s`(x)/x`. (Clearly this does not depend on the choice of x ∈ [x].)
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A section s of O(−1) defines a function on Cn+1 \ 0, s̃, by, for [x] ∈ Uj,

s̃(x) =
s([x])

xj
.

Then s̃ is well-defined, does not depend on the choice of j, and is homogeneous of degree
−1. So C∞(Pn, O(−1)) is infinite-dimensional while H0(Pn, O(−1)) = 0.

We now define operations on the category of line bundles. The goal is to construct line
bundles that have holomorphic sections.

Definition 18.15. Let M be a complex manifold. If E is a holomorphic line bundle, we
define the dual line bundle E∗ by requiring that the fibers E∗x are dual vector spaces to the
fibers Ex. Given gij the transition maps for E, we define the dual transition maps g∗ij = g−1

ij .

Then E∗ is a holomorphic line bundle, and given x ∈ Uj ∩Uk ⊂ E, ξ ∈ Ex, f ∈ E∗x, f(ξ)
does not depend on whether we compute f(ξ) in Uk or in Uj.

Example 18.16. The dual of the tautological line bundle is by definition O(1) = O(−1)∗.
It has the transition maps

g∗ij([x]) =
xj
xi
.

As above, the sections are functions on Cn+1 \ 0 which are homogeneous of degree 1. So
H0(Pn, O(1)) consists of linear forms on Cn+1 (since every holomorphic function extends over
0 on Cn+1.)

Definition 18.17. Let F,E be holomorphic line bundles over M . We define the tensor
product of line bundles by (F ⊗ E)x = Fx ⊗ Ex on fibers and

gF⊗Eij = gFij ⊗ gEij .

Here the tensor product of holomorphic functions is defined by pointwise multiplication.

Example 18.18. Let O(k) = O(1)⊗k (for k ≥ 0; for k < 0 we have O(k) = O(−1)⊗−k).
Then we have transition maps gkij([x]) = xkjx

−k
i so H0(Pn, O(k)) consists of kth degree forms

on Cn+1. The dimension of H0(Pn, O(k)) is (n+ k)!/n!.

Definition 18.19. The Picard group is the group {O(k) : k ∈ Z} of line bundles on Pn.
with tensor product as multiplication and duality as inversion.

So the Picard group is isomorphic to Z. The identity of the Picard group O(0) is the
trivial bundle. The sections on O(0) are exactly those functions Pn → C.

Definition 18.20. A Hermitian metric on a holomorphic line bundle h = (hj)j is a vector of
smooth hj : Uj → [0,∞) satisfying the compatibility condition hj(x) = |gij(x)|2hi(x), such
that with ej(x) = Θ−1

j (x, 1) defined for x ∈ Uj, we have norms || · || on each fiber defined by

||ej(x)||2h = hj(x).
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The norm is well-defined because any element of a fiber Ex is a scalar multiple of ej(x).
For a section s we have

||s(x)||2h = hj(x)|sj(x)|2

in Uj.

Definition 18.21. The Fubini-Study metric is the Hermitian metric on O(1) given by

hj([x]) =
|xj|2

|x|2

for [x] ∈ Pn.

Example 18.22. Let

f(x, x) =
∑

|α|=|β|=k

cαβx
αxβ

be such that f(x, x) > 0. Then we can define

hj(x) =
|xj|2k

f(x, x)
.

By Quillen’s theorem, if k is large enough then there is a polynomial such that the metric
we have just defined is the pullback of the Fubini-Study metric.

Definition 18.23. A Hermitian line bundle is a holomorphic line bundle equipped with a
Hermitian metric.

Definition 18.24. A positive line bundle is a Hermitian line bundle (E, h) such that hj =
e−ϕj for some strictly plush functions ϕj.

On a positive line bundle, there will be lots of holomorphic sections.

Example 18.25. Take U0 ⊂ Pn to be the set of [x] such that x0 6= 0. Then h0([x]) =
|x0|2|x|−2 for the Fubini-Study metric. The Fubini-Study metric makes O(1) into a positive
line bundle by

ϕ0(z) = − log(|x0|2|x|−2) = log(1 + |z|2).

In fact,

∂j∂kϕ0(z) =
δjk

1 + |z|2
− zkzj

(1 + |z|2)2
.

It is easy to check that this matrix is positive-semidefinite, so (O(1), h) is a positive line
bundle.
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18.2 Integration on Hermitian line bundles

Let h be the Hermitian line bundle defined by hα = e−ϕα for some strictly plurisubharmonic
function ϕα.

Definition 18.26. The Levi form of h is given by

ωα =
1

2i
∂∂∂α.

The Levi form is a (1, 1)-form, given by

ωα =
1

2i

∑
j,k

∂j∂kϕαdxj ∧ dxk.

Then ϕα = 2 log |gαβ|+ϕβ for transition functions ϕ. It follows that ωα = ωβ on overlapping
patches so ω is a real 2-form.

Example 18.27. Let h be the Fubini-Study metric. Then the Levi form of h is

ω` =
i

2

∑
j

dxj ∧ dxj
1 + |x|2

−
∑
j 6=`
k 6=`

xjxk dxj ∧ dxk
(1 + |x|2)2

=
i

2

(
d(x dx)

(1 + |x|2)
− (x dx) ∧ (x dx)

(1 + |x|2)2

)
.

Given a Levi form ω on an n-dimensional manifold, we obtain a volume form dV = ωn/n!
(where ωn is the exterior power).

Example 18.28. The Fubini-Study Levi form is invariant under the unitary group. We can
use this diagonalize the Fubini-Study metric so that the double sum is only a single sum,
and prove that

dV =
in

2n
dx1 ∧ dx1 ∧ · · · ∧ dxn ∧ dxn

(1 + |x|2)n+1
.

Because we have a volume form, integration makes sense.

Definition 18.29. The space L2(M,E, h) is the completion of the space of s ∈ C∞(M,E)
for which the norm defined by the inner product

〈s, s′〉h =

∫
M

〈s(x), s′(x)〉h dV.

Here the inner product in the integral is the inner product induced on each line appearing
in the line bundle induced by the Hermitian metric h.

We thus introduce the Bergman projection L2(M,E)→ H0(M,E), which is orthogonal.
To construct it, we compute an orthonormal basis of H0(M,E).
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Example 18.30. For the Fubini-Study metric on O(k), O the Picard group, consider the
basis skα such that on the patch Ω0, skα(x) = xα1

1 . . . xαnn , |α| = k. Then

〈sα, sβ〉FS =

∫
Pn
xαxβhFS,0(x) dVFS

=
i

2

∫
Cn

xα1
1 · · · xαnn xβ1

1 · · ·xβnn
(1 + |x|2)k+n+1

dx1 ∧ dx1 ∧ · · · ∧ dxn ∧ dxn

= δαβπ
n α!

(n+ k)!

where we used polar coordinates. Therefore we normalize by dividing skα,0 by
√

(k + n)!/(α!πn)
to get an orthonormal basis. The Bergman projection is given by

Πku(x) =
∑
|α|=k

skα(x)〈u, skα〉k.

The Bergman kernel Bk is defined by

Πku(x) =

∫
Pn
〈u(y), Bk(y, x)〉h dV.

So we have
Bk(y, x) =

∑
α

skα(y)skα(x).

Therefore Bk is holomorphic in the first variable and antiholomorphic in the second variable.
We conclude that Bk can be given by the explicit formula

Bk(x, y) =
∑
|α|=k

(k + n)!

α!πn
zαwα =

(k + n)!

k!πn
〈z, w〉k

where x = [z], y = [w]. In particular, the Bergman kernel is given by the Hermitian metric:

Bk(x, x) = e−2kϕ0(x) =
(k + n)!

k!πn
.

18.3 Asymptotics for the Bergman kernel

Here we let, for L a line bundle, Lk denote the kth tensor power of L with itself.

Theorem 18.31 (Fefferman, Boutet, de Monvel, Sjostrand, Zelditch, Catlin, Berman, Bern-
som). Let L → M be a positive Hermitian line bundle and let skj be an orthonormal basis
of H0(M,Lk). Then there is an asymptotic expansion

∑
j

|skj (x)|2h =
kn

πn
+
∞∑
`=1

a`(x)kn−`.
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Towards this theorem, we work locally. We identify a coordinate patch with BCn(0, 1)
and fix a strictly plurisubharmonic weight ϕ on BCn(0, 1) and a semiclassical parameter
h ∈ (0, 1). This gives a (1, 1)-form

ω = −i∂∂ϕ =
∑
jk

∂j∂kϕ dxj ∧ dxk.

We then have a volume form defined by n! dV = ωk, the right hand side being an exterior
power. Then

||u||2ϕ =

∫
BCn (0,1)

|u(x)|2e−2ϕ(x)/h dV (x)

is a L2-norm and we denote its inner product by (·, ·)ϕ. We will obtain a local reproducing
kernel K given some ε > 0 and χ a BCn(0, ε)-cutoff function, i.e.

u(x) =

∫
BCn (0,1)

χ(y)u(y)K(y, x)e−2ϕ(y)/h dV (y).

Definition 18.32. The reproducing kernel K is called a Bergman kernel if K(x, ·) is holo-
morphic.

Example 18.33. Reproducing kernels also have applications in machine learning.

To construct the Bergman kernel, we obtain an approximate reproducing kernel, which
is correct up to an error of order h∞.

Recall that for A : L2
ϕ → L2

ϕ an integral operator, e−ϕAeϕ sends L2 to itself an its integral

kernel is given by e−ϕ(x)/hKA(x, y)e−ϕ(y)/h.

Definition 18.34. Let Λ ⊆ BCn(0, 1) × Cn, Λ = {(y, ξ)} where ξ is a function of (x, y).
Then Λ is a good contour if

Im〈ξ, x− y〉 ≥ δ|x− y|2 + ϕ(y)− ϕ(x).

Example 18.35. If ϕ(x) = |x|2/2 then

K(y, x) = (πh)−ne〈x,y〉/h

and this Bergman kernel is valid on Cn. Here ω = i/2
∑

j dzj ∧ dzj and dV is the Euclidean
volume form. We obtain a good contour by ξ(x, y) = iy. Then

2 Im〈iy, x− y〉 = |y|2 + |x|2 + |x− y|2.

Taylor expanding,

ϕ(x) = ϕ(y)− ImQ(x, y)(x− y) + (∂∂ϕ(x)(x− y))x− y +O(|x− y|3)

where Q is some holomorphic function and

2δ|x− y|2 ≤ (∂∂ϕ(x)(x− y))x− y.

We now define a good contour by ξ = Q.
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Lemma 18.36. Suppose Λ is a good contour for ϕ. Then there is a ε > 0 and a B(0, ε)-cutoff
χ such that for every u ∈ A(B(0, 1)),

u(x) = i−n
2

(2πh)−n
∫

Λ

ei〈ξ,x−y〉/hu(y)χ(y) dξ ∧ dy +O(e(ϕ(x)−δ)/h)||u||ϕ.

This lemma can be intuited by deforming Λ into a flat space and then applying the
Fourier inversion formula. That is not a proof, however. We put cn = i−n

2
for simplicity.

Proof. Define the form

η = cn(2πh)−nei〈ξ,x−y〉/hu(y)χ(y) dξ ∧ dy.

Define

Is =

∫
Λs

η

where Λs is the form defined by ξs(x, y) = ξ(x, y) + is(x− y).

Lemma 18.37. As s→∞, Is → u(x) for x ∈ B(0, 1/2).

Proof. We have the expression

ei〈ξ,x−y〉/he−s|x−y|
2/hu(y)χ(y)(cn dyξ(x, y) ∧ dy + sn dm(y)).

By the dominated convergence theorem e−s|x−y|
2/hcn dyξ(x, y) ∧ dy → 0 as s → ∞. As a

distribution,
sn(2πh)−ne−s|x−y|

2/h → δ0(x− y).

Now Ω = Cn× [0, s] and ∂Ω = Cn× s−Cn× 0 (as a chain). We introduce the homotopy
h(y, t) = 〈y, ξ〉+ itx− y, so h : Cn → [0,∞)→ C2n and put ω = h∗η. Since ω is compactly
supported (since η has a factor of χ) we can apply Stokes’ theorem to see that∫

Ω

dω =

∫
∂Ω

ω.

Since η has a factor of dξ ∧ dy, ∂η = 0. So

dη = ∂η = cn(2πh)−ne−〈ξ,x−y〉/hu(y)∂χ ∧ dy ∧ dξ.

Then

Is − I0 =

∫
Cn×s

h∗η =

∫
Cn×0

h∗η =

∫
Cn×[0,s]

h∗ dη

Since Is → u(x) we can estimate dη. If |y| < 1/2 then dχ = 0, and

Re(i〈x− y, ξ〉/h) ≤ −δ|x− y|2 + ϕ(x)− ϕ(y)

since Λ is good. Since |x| < ε and we can take ε < 1/4 we only need to consider |y| > 1/2,
in which case

Re(i〈x− y, ξ〉)/h ≤ −δ/C − ϕ(y) + ϕ(x).
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Now∣∣∣∣∫
Cn×[0,s]

h∗(dη)

∣∣∣∣ ≤ Ch−ne−δ/16h+ϕ(x)/h

∫
|y|≥1/2

|χ′(y)||u(y)|e−ϕ(y)/h dm(y)

∫ s

0

(1 + tn)e−t/16h dt

≤ Ce−δ/32h+ϕ(x)/h||u||ϕ.

We conclude that
Is − I0 = O(e−δ/heϕ(x)/h)||u||ϕ.

The right hand side does not depend on s so we take s→∞ to see that we have constructed
an approximate kernel.

Unfortunately the approximate kernel we constructed here may not be holomorphic. So
we consider for which a do we have

u(x) = cn(2πh)−n
∫

Λ

ei〈ξ,x−y〉u(y)(1 + a)χ(y) dξ ∧ dy +O(ϕ(x)/h− δ/h)||u||ϕ.

If
aei〈ξ,x−y〉/h dξ = dξ(ei〈ξ,x−y〉A)

where A =
∑

j Aj(x, y, ξ, h) dξ̂j and dξ̂j is the unique (n− 1, 0)-form such that ξj ∧ dξ̂j = dξ
then ∫

Λ

ei〈ξ,x−y〉/hu(y)χ(y)a(x, y, ξ, h) dξ ∧ dy =

∫
Λ

u(y)χ(y)d(ei〈ξ,x−y〉/hA) ∧ dy

=

∫
Λ

χ(y)d(u(y)ei〈ξ,x−y〉/hA) ∧ dy

= −
∫

Λ

dχ ∧ u(y)ei〈ξ,x−y〉/hA ∧ dy

= O(e−δ/heϕ(x)/h)||u||ϕ

using that Λ is a good contour. Intuitively we are replacing a pseudodifferential symbol that
depends on (x, y, ξ) with a pseudodifferential operator that depends on (x, ξ).

Definition 18.38. A symbol a(x, y, ξ, h) is a negligible symbol if a =
∑

j DξjAj +(x−y)A/h
for some A.

We introduce the differential operator ∇̃ = ∂ξ+i(x−y)/h. Then ia = ∇̃A and we absorb
the i into the A.

In this case the error term introduced by adding a is O(e−δ/heϕ(x)/h)||u||ϕ. We are specif-
ically interested in when A has an asymptotic sum A =

∑
mAmh

m. What this means is that
for every N ,

A−
∑
m≤N

Amh
m = O(hN+1)

or in other words the sum “converges” modulo O(h∞). We write A(N) for the Nth partial
sum. Then a(N) = ∇̃A(N) +O(hN+1).
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We now introduce the pseudodifferential operator

S = eih〈Dy ,Dξ〉 =
∞∑
m=0

(ih)m

m!
Dy ·Dξ.

A priori this makes no sense, but it does make sense modulo O(h∞). In fact if a =
∑

m amh
m,

b =
∑

m bmh
m we say Sa = b if and only if

bj =
∑

m+p=j

im

m!
(Dξ ·Dy)

map

where the dot product of differential operators is defined by Dξ ·Dy =
∑

j DξjDyj . Moreover

S−1 = e−ihDy ·Dξ . Then S−1Sa = a up to O(h∞).

Lemma 18.39. a is a negligible symbol if and only if Sa|x=y = 0.

Proof. S∂ξ = ∂ξS and, thinking of yj as the multiplication operator, Syj = yjS + hDξjS.
Therefore

S((x− y)A) = (x− y)SA− hDξjSA.

If a is negligible, say a = ∇̃A, then

Sa = S∇̃A = ∂ξjSA+ i(x− y)SA/h− ∂ξ0SA = i(x− y)SA/h

which restricts to 0 on x = y. Conversely, if Sa|x=y = 0 we can write Sa = (x− y)B. Now
S∇̃ = i(x− y)S/h so

∇̃S−1 = iS−1(x− y)/h.

Therefore
∇̃S−1B = iS−1(x− y)B/h.

So ia/h = ∇̃(S−1B).

Definition 18.40. Let Y ⊂ CN be a R-linear subspace. Then Y is a totally real space if
Y ∩ iY = 0.

Assume ϕ is analytic as a function on Rn×Rn. We extend ϕ to a function on the maximal
totally real subspace {(x, x) ∈ Cn × Cn}. To do this, let ι(x, y) = (x + y,−i(x− y)). Then
let ι∗ϕ̃ = ϕ. We then can find a ψ which is holomorphic near (0, 0) such that ψ(z, z) = ϕ(z).
Then ψ(x, y) = ψ(y, x) with

2 Reψ(x, y)− ϕ(x)− ϕ(y) ≤ −δ|x− y|2.

We solve for ξ in the equation

i〈ξ, x− y〉 = 2(ψ(x, z)− ψ(y, z)).

This is possible by the lemma on negligible symbols and ξ is a function of (x, y, z). By
Taylor’s theorem,

ξ(x, y, z) = −2i

∫ 1

0

∂xψ(tx+ (1− t)y, z) dt
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so ξ(x, x, z) = −2i∂xψ(x, z). In fact (x, y, z) 7→ (x, y, ξ) is a biholomorphic function close
to 0 on C3n by the analytic implicit function theorem. To see this we must show that the
quadratic form given by the matrix ∂zξ(0) is nondegenerate. Now

∂zξ(0) = −2i∂x∂zψ(0) = −2i∂x∂xϕ(0)

which is nondegenerate since ϕ is strictly plush. By our previous estimate on ψ, the contour

Λ = {(y, ξ) : ξ = ξ(x, y, y)}

is good.

Lemma 18.41. We have

u(x) = (πh)−n
∫
B(0,1)

χ(y)ei(2ψ(x,y)−2ψ(y,y))/h i

2
det ∂yξ(1+a(N))u(y) dy∧dy+O(eϕ(x)/hhN+1)||u||ϕ.

Definition 18.42. The Bergman function is defined on a compact complex manifold equipped
with a positive line bundle by

B(x) = ||K(x, x)|| = K(x, x)e−2ϕ(x).

Lemma 18.43. We have
B(x) = sup

s∈H0(M→L)
||s||L2≤1

||s(x)||2.

Proof. We have

K(x, y) =
∑
α

uα(x)uα(y),

the sum ranging over an orthonormal basis uα of H0(M → L). It follows that

B(x) =
∑
α

||uα(x)||2

and now we use the Cauchy-Schwarz inequality.

From this we can easily compute∫
M

B dV = dimH0(M → L).

Given L→M fixed, we let Bk denote the Bergman function determined by Lk.

Lemma 18.44. The Bergman function satisfies

|Bk(x)| ≤ Ckn.

Therefore dimH0(M → Lk) is finite and grows like kn. Morally this lemma is a restate-
ment of the uncertainty principle because it describes how many independent states can be
on a compact set, with h = 1/k. The uncertainty principle says we cannot localize past√

1/h =
√
k. Here we cannot localize too much because we only have so many holomorphic

sections.
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Proof. Let s ∈ H0(M → Lk). We want to show

||s(x)||2 ≤ Ckn||s||L2
k
.

Then the claim follows from the previous lemma. Since ||s||L2
k
≤ ||s||L2

k(Ωj) we might as well
prove the claim locally.

Choose an atlas so θj(x0) = 0 and write s(x) = (x, u(x)) where u is holomorphic near
x0 = 0. Now ϕj is strictly plurisubharmonic so up to a linear change of variables

ϕj(x) =
n∑
j=1

λj|xj|2 + ReQ(x) + ϕ(0) +O(|x|3)

where Q(x) = 〈Ax, x〉 + 〈a, x〉 is holomorphic. Now ϕ(0) does not affect our computation
so we might as well take ϕ(0) = 0. By absorbing the holomorphic term Q into u we may
assume Q = 0. Close to 0 we may assume O(|x|3) = 0. Now

||u(0)||2

||u|L2
k(Ωj)

≤ ||u(0)||2

||u||L2
k(B(0,Rk))

and we now make the change of variables

f(w) = u(w/
√
k)

and

kϕ(w) = ϕ0(w) =
1

2

∑
j

λj|wj|2 +O(|w|3k−1/2).

By our assumptions on ϕ, u(0) = f(0). Here dm and dV are absolutely continuous to each
other so we can replace dV with dm up to a constant error. Hence

||u(0)||2

||u||L2
k(Ωj)

≤ Ckn||f(0)||2∫
|w|≤Bk(

√
k)
|f(w)|2e−2ϕ0(w) dm(w)

≤ Ckn||f(0)||2∫
|w|≤Bk(

√
k)
|f(w)|2e−

∑
j λj |wj |2 dm(w)

.

Now |f |2 is strictly plush so by the mean value theorem for measures,∫
|w|≤Bk(

√
k)

e−
∑
j λj |wj |2|f(0)|2 dm(w) ≤

∫
|w|≤Bk(

√
k)

|f(w)|2e−
∑
j λj |wj |2 dm(w).

Pulling out |f(0)|2 and taking k big enough that the integral converges we see our lemma.

Actually Mike Christ showed that

|K(x, y)| ≤ Ce−
√
k log kd(x, y).

But we have only proved |K(x, y)| = O(k−∞).
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Theorem 18.45. Assume ϕ is real analytic. If d(x, y) < ε then in a suitable trivialization,

∂αx,y(K(x, y)−K(N)(x, y)) = O(k−N−1+n+|α|ek(ϕ(x)+kϕ(y))||u||k.

To prove the theorem we rephrase the Hormander L2-estimates to work for manifolds.

Lemma 18.46. For every (0, 1)-form f ∈ C∞0,1(M → Lk) such that ∂f = 0 there is a u ∈
C∞(M → Lk) such that ∂u = f and ||u||L2

k
≤ C||f ||L2

k
, and C can be chosen independently

of k.

Lemma 18.47. One has

K(y, x) = (xKx, K
(N)
y )L2

k
+O(k−N−1+n)ekϕ(x)+kϕ(y)||Kx||L2

k
.

Proof. We use the fact that

u(y) = (χyu,K
N(·, y))L2

k
+O(k−N−1+nekϕ(y))||u||ϕ

on the function u(y) = Kx(y). Then

K(y, x) = (χKx, K
(N)
y )L2

k
+O(kN−1)ekϕ(y)||u||L2

k
.

Here
||Kx||2L2

k
= Bk(x)e2kϕ(x)

so
||Kx||L2

k
≤ Ckn/2ekϕ(x).

Now use
ekϕ(y)||u||2L2

k
≤ ekϕ(x)+kϕ(y)kn/2

to prove the lemma.

Recall also that if P : H → kerA is an orthogonal projection and Pu = v, w = u− Pu,
then A(u− Pu) = Au and

||w|| = min
Aw̃=Au

||w̃||.

Proof of theorem. We may assume that χ is real-valued. Then

(χKx, K
(N)
y )L2

k
= (Kx, χK

(N)
y )L2

k
= Pk(χK

(N)
x )(y).

Then we define

uy(x) = K(N)
y (x)− (χK(N)

y , Kx)L2
k

= K(N)
y (x)− Pk(χK(N)

y )(x).

By the linear algebra above, uy is the L2
k-minimal solution to the problem

∂uy = ∂χK(N)
y + χ∂K(N)

y = ∂χK(N)
y
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because ϕ was assumed analytic. Moreover, ∂χ = 0 away from the diagonal. So

∂uy(x) = O(e−δkekϕ(x)+kϕ(y)).

Since uy is the minimal solution, ||uy||L2
k
≤ ||ũ||L2

k
where ũ is the solution to the ∂-problem

yielded by the Hormander estimate. Therefore the Hormander estimate gives

||uy||L2
k
≤ Ce−δkekϕ(y).

By the Cauchy-Green formula we have, for any compactly supported ψ which is identically
1 near 0,

|u(0)| ≤ sup
D
ekϕ(y)O(e−δ/kekϕ(y))

for any open neighborhood D of 0. If we take D ⊂ B(0, k−1) and translate appropriately we
have

|uy(x)| ≤ e−δkekϕ(y)ekϕ(x).

Therefore we can actually approximate the Bergman kernel by its asymptotic expansion.
We use this theorem to find an asymptotic expansion for the Bergman function.

Corollary 18.48. One has

Bk(x) =

(
k

π

)n
(1 + k−1b1(x, x) + k−2b2(x, x) + . . . )

where the sum is meant in the asymptotic sense.

Corollary 18.49. One has

dimH0(M → Lk) =
kn

πn
(1 +O(k−1))

∫
M

dV.

All that remains is to extend from the real-analytic case to the C∞ case. To do this we
use a technique introduced by Hormander and Nirenberg.

Lemma 18.50. Suppose f ∈ C∞comp(Rm). Then there is a f̃ ∈ C∞(Cm) such that f̃ |Rm = f

and ∂f̃(z) = O(| Im z|∞).

Proof. By a Paley-Weiner type theorem, we can define

f̃(x+ iy) =
1

(2π)m

∫
Rm

eixξχ(|ξ||y|)e−yξf̂(ξ) dξ

for some compactly supported function χ which is identically 1 at 0. Obviously f̃ is smooth,
and ∂ only falls on the χ term. Then we end up with χ′, which is not supported at 0, and
a factor of |ξ|yj|y|−1. We can then add factors of |ξ||y|−1 with impunity since χ(N) is 0 close
to 0. Iterating we get the decay we need.
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Definition 18.51. The function f̃ is called the almost analytic extension of f .

Using the theory of almost analytic extensions, one can prove the following lemma.

Lemma 18.52. Assume ϕ is smooth. There is a function ψ which is C∞ in a neighborhood
of 0 ∈ Cn+n such that ψ(x, x) = ϕ(x) and ∂xψ(x, y) and ∂yψ(x, y) = O(|x− y|∞).

Now notice that we can replace any assumption that ∂ϕ = 0 with ∂ϕ with the property
in the above lemma anywhere in the above construction of the approximate Bergman ker-
nel, since the function was only an approximation away from the diagonal anyways. This
completes the proof of the theorem of Fefferman, Boutet, de Monvel, etc.

18.4 Morphisms into projective space

Throughout this section, let M be a compact complex manifold, L→M a line bundle. Let
ωFS be the Fubini-Study metric on O(1), the dual of the tautological line bundle, of Pn for
some n. We let (skj )j be an orthonormal basis of H0(M → Lk). Define the morphism

ϕk : M → Pdk−1

x 7→ [sk0(x), . . . , skdk(x)].

Theorem 18.53 (Catlin-Tian-Yau-Zelditch asymptotics). Let ω be a positive Hermitian
metric on L. Then there is an asymptotic expansion

ω =
1

k
ϕ∗kωFS +

ω2

k2
+
ω3

k3
+ . . .

for some ωj which are (1, 1)-forms.

Proof. Write skj (z) = fkj (z)ek for some holomorphic functions fkj . Then

ϕ∗kωFS = i∂∂

(
log

dk∑
j=1

|fkj (z)|2
)
.

On the other hand, the Bergman projector is given by

Bk(z) = e−2kϕ(z)

dk∑
j=1

|fkj (z)|2.

Therefore
i∂∂ logBk(z) = −kω + ϕ∗kωFS.

So

ω =
1

k
ϕ∗kωFS +

1

ik
∂∂ logBk(z)

=
1

k
ϕ∗kωFS +

1

ik
∂∂
a1(x)

k
+ . . .

as k →∞.
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Definition 18.54. A Hodge metric is a positive (1, 1)-form ω such that [ω] ∈ H2(M,Q).

In other words, ω is in the second rational-valued cohomology class of M .

Theorem 18.55 (Kodiara embedding theorem). The following are equivalent:

1. If n is large enough, then M can be embedded in Pn.

2. M admits a positive Hermitian line bundle.

3. M admits a Hodge metric.

In the below proof we use ϕ to mean the weight and ϕk to mean the embedding, oops.

Proof. Obviously if we have an embedding in projective space we can just pull back (O(1), ωFS)
to M . The proof that positive Hermitian line bundles are equivalent to Hodge metrics uses
Chern classes.

If M has a positive Hermitian line bundle, then ϕk is an immersion M → Pdk . Suppose
that ϕk is never injective. Then there are sequences xk, yk such that xk 6= yk and ϕk(xk) =
ϕk(yk).

First suppose d(xk, yk)
√
k →∞. Since ϕk(xk) = ϕk(yk), for all x, the Bergman kernel K

has K(x, xk) = K(x, yk). Then∫
B(xk,rk/2)

|Kk(x, xk)|2e−2kϕ(x) dV (x) ∼ e2kϕ(xk) k
n

πn

yet ∫
B(xk,rk/2)

|Kk(x, xk)|2e−2kϕ(x) dV (x) =

∫
B(yk,rk/2)

|Kk(x, yk)|2e−2kϕ(x) dV (x).

Now d(xk, yk)� k−1/2 so the balls can be taken to be disjoint. Then

Kk(xk, xk) =

∫
M

|Kk(x, xk)|2e−2kϕ(x) dV (x) ≥ kn

πn
(e2kϕ(xk) + e2kϕ(yk)).

But

Kk(xk, yk) ∼
kn

πn
e2kϕ(xk).

Without loss of generality we can assume ϕ(yk) ≥ ϕ(xk). But

e2kϕ(xk) & e2kϕ(xk) + e2kϕ(yk)

which is a contradiction.
Otherwise we can assume d(xk, yk) ≤ Ck−1/2. By changing coordinates we may assume

that xk = 0, yk = wkk
−1/2, |wk| ≤ C, and xk 6= yk. Now put

fk(t) =
|Kk(0, twkk

−1/2)|2

Kk(0, 0)Kk(twkk−1/2, twkk−1/2)
.
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Then fk is smooth on [0, 1] and by the Cauchy-Schwarz inequality 0 ≤ fk(t) ≤ 1. In fact
fk(0) = 1 and fk(1) = 1. So there is a tk ∈ [0, 1] such that f ′′k (tk) ≥ 0. But

fk(t) = exp(−2kψ(0, twkk
−1/2 − ϕ(0)− ϕ(twkk

−1/2)))(1 + r(twk)k
−1 + . . . )

= exp(−t2〈Awk, wk〉+O(t3|wk|3))(1 + rk(twk)k−1 + . . . )

which implies |wk| = O(k−1/2). So

f ′′k (t) = −2〈Awk, wk〉O(|wk|3k−1/2 + |wk|2k−1) ≤ −C|wk|2 < 0

which is a contradiction.

Theorem 18.56 (Chow). If M admits a positive Hermitian line bundle, then M is a pro-
jective variety.

Proof. A compact submanifold of Pn is a projective variety.

18.5 Zworski’s conjecture

Conjecture 18.57 (Zworski). Let ΠN : L2(Pn → O(N)) → H0(Pn → O(N)) be the
Bergman projector, and consider the differential equation

iut = ΠN(|u|2Nu)

on the finite-dimensional space H0(Pn → O(N)). Then this differential equation has a Lax
pair and hence is a completely integrable system.
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Part V

Harmonic analysis
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Chapter 19

Rearrangement-invariant spaces

We are interested in studying integral transforms. One often only defines these transforms
on test functions and extends them using a continuity argument. For example, the Hilbert
transform is defined by

Hf(x) =
1

π

∫ ∞
−∞

f(y)

x− y
dy.

This makes no sense if f(0) 6= 0, for example, but one can fix this by taking

Hf(x) = lim
ε→0

1

π

(∫ ε

−∞
+

∫ ∞
ε

)
f(y)

x− y
dy.

Then Hf converges if f is a Schwartz function. One can then check that for every p ∈ (1,∞)
there is a constant Cp such that for every f for which Hf is defined,

||Hf ||Lp ≤ Cp||f ||Lp .

So H extends uniquely to a bounded linear operator on Lp, since such f are dense in H.
We therefore consider certain generalizations of Lp spaces. Fix a σ-finite measure space

(X,Σ, µ).

Definition 19.1. A norm ||·|| is rearrangement-invariant if for every isomorphism of measure
spaces Φ : X → X and every measurable function f we have

||f || = ||f ◦ Φ||.

Definition 19.2. A norm ||·|| is monotone if for all measure functions f, g such that |f | ≤ |g|
a.e. we have

||f || ≤ ||g||.

A rearrangement-invariant, monotone norm ignores the sign of a function, and is only
interested in how “tall” a function is versus how “wide” the function is. Clearly Lp norms
are rearrangement-invariant and monotone.
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19.1 Log-convexity for Lp norms

Recall that Lp norms are log-convex , i.e. if θ ∈ (0, 1) and

1

r
=

1− θ
p

+
θ

q
,

we have
||f ||Lr ≤ ||f ||1−θLp ||f ||

θ
Lq .

This is essentially equivalent to the Hölder inequality. We give another proof of log-convexity.

Theorem 19.3 (three-lines lemma). Let f be holomorphic on the strip 0 ≤ Re z ≤ 1 of at
most double-exponential growth. Suppose that |f(z)| ≤ A when Re z = 0 and |f(z)| ≤ B
when Re z = 1. Then

|f(z)| ≤ A1−Re zBRe z.

Proof. The hypothesis and conclusion are invariant under multiplying f by Cecz where C, c ∈
R, as long as we appropriately rescale A,B. Thus we may assume that A = B = 1, and
want to show ||f ||L∞ ≤ 1.

Assume f goes to 0 at infinity, so there is an N such that if Im z ≥ N , we have |f(z)| ≤ 1.
Then by the maximum principle, ||f ||L∞ = 1.

Otherwise, note that

f(z) = lim
ε→0

f(z) exp(εei((π−ε)z+ε/2)),

and by assumption on f , it follows that the function in the limit goes to 0, so the right-hand
side is ≤ 1.

Proof of log-convexity. Let f be a simple function and suppose µ(X) <∞. Let

g(z) =

∫
X

|f |z.

Then |g(z)| = O(e|z|) and |g(s + it)| = ||f ||sLs . The claim follows for f by rescaling the
three-lines lemma.

The claim is invariant under monotone convergence and µ is σ-finite, so the assumptions
that f is simple and µ is finite can be dropped.

Log-convexity allows us to prove that certain Lp spaces embed in others.

Corollary 19.4. If µ(supp f) <∞ and p ≤ q then

||f ||Lp ≤ µ(supp f)1/p−1/q||f ||Lq .

In particular, if µ(X) <∞, then Lq(µ) ⊆ Lp(µ).

Proof. This is obvious if q =∞ and otherwise follows by log-convexity.

Definition 19.5. A granular measure is a measure ν such that there is a δ > 0 such that
for every set A which is not ν-null, ν(A) > δ.
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Corollary 19.6. If µ is δ-granular and p ≤ q then

||f ||Lq ≤ δ1/q−1/p||f ||Lp .

In particular, Lp(µ) ⊆ Lq(µ).

The proof is the same. In particular, `p spaces satisfy this estimate, and if card supp f =
N , f ∈ `p, then we have

||f ||`q ≤ ||f ||`p ≤ N1/p−1/q||f ||`q

if q ≥ p. Though Lebesgue measure is not granular, if a function is constant on boxes which
tile Rn, one can replace the Borel algebra with the σ-algebra generated by the boxes, and
restrict Lebesgue measure to this σ-algebra; then it becomes granular.

Now note that by log-convexity with q =∞, if p ≤ q we have

||f ||Lq ≤ C1−p/q||f ||p/qLp

if |f | ≤ C. On the other hand, if |f | ≥ c on supp f then replacing f by 1/f in the above
estimate we have

||f ||Lp ≤ c1−q/p||f ||q/pLq .

19.2 Lorentz norms

Still fix a measure space (X,µ).

Definition 19.7. The weak Lp norm is defined by

||f ||Lp,∞ = sup
λ>0

λµ({|f | ≥ λ})1/p.

Theorem 19.8 (Chebyshev inequality). One has

||f ||Lp,∞ ≤ ||f ||Lp .

Proof. Take supλ of both sides of the inequality

λpµ({|f | ≥ λ}) ≤
∫
|f |≥λ

λp dµ ≤
∫
X

|f |p dµ = ||f ||pLp .

So Lp ⊆ Lp,∞. This motivates the terminology “weak Lp”.
Let λ be the coordinate function on R+. Recall that dλ/λ is the Haar measure on R+,

the group of positive reals under multiplication. Now L∞(dλ/λ) = L∞(R+) since Haar and
Lebesgue measures are mutually absolutely continuous. Thus we have

||f ||Lp,∞ = p0||λµ({|f | ≥ λ})1/p||L∞(dλ/λ).

This seems a little silly until we reason by metaphor with the following lemma.
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Lemma 19.9. One has

||f ||Lp = p1/p||λµ({|f | ≥ λ})1/p||Lp(dλ/λ).

Proof. One has

p

∫ |f(x)|

0

λp
dλ

λ
=

∫ |f(x)|

0

pλp−1 dλ = |f(x)|p

by the fundamental theorem. Integrating both sides and using Fubini’s theorem, we have

||f ||pLp = p

∫
X

∫ |f(x)|

0

λp
dλ

λ
dx

= p

∫ ∞
0

λp
∫
X

1|f(x)|≥λ dx
dλ

λ

= p

∫ ∞
0

λpµ({|f | ≥ λ}) dλ
λ
.

The claim follows by taking pth roots.

Thus we make the following definition.

Definition 19.10. The (p, q)th Lorentz norm is defined by

||f ||Lp,q = p1/q||λµ({|f | ≥ λ})1/p||Lq(dλ/λ).

Thus the definition of Lp,∞ is consistent with that of the weak Lp norm and we have
Lp,p = Lp.

We now consider certain approximate step functions that will allow us to determine what
the Lorentz norms actually measure.

Definition 19.11. A substep function of height H and width W is a function f such that
||f ||L∞ ≤ H and µ(supp f) ≤ W .

A δ-quasistep function of heightH and widthW is a function f such that δH ≤ |f | ≤ H/δ
and δW ≤ supp(f) ≤ H/δ.

Usually the exact value of δ is not important, and we suppress the δ by writing |f | ∼ H.
However, one is always implicitly fixed when working with a family of quasistep functions;
for example, every function is trivially 0-quasistep, which is not very useful.

We can use substep and quasistep functions to understand the behavior of Lorentz norms.

Theorem 19.12. Let f be a measurable function and let p, q, A be given. Then the following
are equivalent:

1. ||f ||Lp,q .p,q A.

2. There is a decomposition f =
∑∞

m=−∞ fm where fm is quasistep of height 2m and width
Wm such that the supp(fm) are disjoint and(

∞∑
m=−∞

2mqW q/p
m

)1/q

.p,q A.
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3. There is a pointwise estimate |f | ≤
∑∞

m=−∞ 2m1Em where(
∞∑

m=−∞

2mqµ(Em)q/p

)1/q

.p,q A.

4. There is a decomposition f =
∑∞

n=−∞ fn where fn is substep of width 2n and height
Hn such that the supp(fn) are disjoint, Hn are nonincreasing, Hn+1 ≤ |fn| ≤ Hn on
supp fn, and (

∞∑
n=−∞

Hq
n2nq/p

)1/q

.p,q A.

5. There is a pointwise estimate |f | ≤
∑∞

n=−∞Hn1En where µ(En) .p,q 2n and(
∞∑

n=−∞

Hq
n2nq/p

)1/q

.p,q A.

Intuitively, if f is quasistep of height H,W then ||f ||Lp,q ≈ HW 1/p, and this estimate
propagates in sums of quasistep functions in `q norm.

Proof. We may assume that A = 1. The implications 2 =⇒ 3 and 4 =⇒ 5 are obvious.
Assume 1. Let Em = {2m−1 < |f | ≤ 2m}, and carry out the dyadic decomposition

Wm = µ(Em), fm = f1Em . Clearly

2mW 1/p
m .p,q ||λµ({|f | ≥ λ})1/p||Lq([2m−2,2m−1],dλ/λ)

and summing both sides over m in `q, 2 holds.
Assume 3. TODO
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Chapter 20

Decoupling theory

This chapter is based on Terry Tao’s online course on harmonic analysis.

20.1 Square-root cancellation

If zj are “random, independent” complex numbers, one intuitively expects∣∣∣∣∣∑
j

zj

∣∣∣∣∣ ≈
√∑

j

|zj|2.

This is true for the expected value where the zj are given random, uniformly selected signs,
up to a constant. This is Khinchine’s inequality .

Another way one can make the above claim rigorous is using Littlewood-Paley theory.

Theorem 20.1 (Littlewood-Paley estimates). Let p ∈ (1,∞), Aj be the annuli in frequency
space

Aj = {ξ ∈ Rd : 2j ≤ |ξ| ≤ 2j+1}.

Assume that fj are functions such that f̂j are supported on disjoint annuli Akj . Then

||
∑
j

fj||Lp .p,d ||
√∑

j

|fj|2||Lp .

If the annuli are separated then we can replace .p,d with ∼p,d.

We will prove this later on. We note however that it is trivial when p = 2. In fact,
since the f̂j have disjoint support, the fj are orthogonal by Plancherel’s theorem. So by the
Pythagorean theorem,

||
∑
j

fj||L2 = ||
√∑

j

|fj|2||L2 .

If we even just have “almost-orthogonality” we still get decent estimates in L2. One can
manipulate the L2 estimate to get estimates in L2k , k ≥ 2, but one needs something stronger
than orthogonality here, and as k →∞ this becomes extremely complicated.
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To generalize to p > 2 where p 6= 2k, we want to study decoupling estimates , those of the
form

||
∑
j

fj||Lp .p,d
√∑

j

||fj||2Lp .

This is weaker than a square root cancellation estimate, but it is much easier to prove. If
p = 2 it follows easily by noting that

||
∑
j

|fj|2||L1 ≤
∑
j

|||fj|2||L1

by the triangle inequality, and then taking the square root of both sides. One can therefore
think of decoupling estimates as vast generalizations of the Pythagorean theorem. The
reason these estimates are called decoupling estimates is that we start with the left-hand
sides, where we take a norm of

∑
j fj, and then on the right-hand side we take norms of each

of the fjs separately, and they “decouple” in the sense that their norms no longer influence
each other.

One can iterate decoupling estimates in the sense that

||
∑
j1,...,jn

fj1,...,jn||Lp .p,d,n
√ ∑

j1,...,jn

||fj1,...,jn||2Lp ,

simply by induction on n. Thus decoupling plays nicely with induction, though notice that
the constant possibly depends on n. An important concept in the study of decoupling
estimates is to control the dependency of the constant on n.

Proof of Littlewood-Paley estimates. We first prove that if |kj − kj′ | ≥ 2 then

||
√∑

j

|fj|2||Lp .p,d ||
∑
j

fj||Lp .

Let ψ be a bump function on {ξ : 1 − ε < |ξ| < 2 + ε} which is identically 1 on
{ξ : 1 < |ξ| < 2}. Let

P̂kjf(ξ) = ψ(2−kjξ)f̂(ξ)

so Pkj is a Fourier multiplier (actually a Littlewood-Paley projector), which is bounded
Lp → Lp. Let f =

∑
j fj, so fj = Pkjfj. Let ε1, . . . , εn be random signs, drawn uniformly

and independently, and let

P =
∑
j

εjPkj

be a random Fourier multiplier, which again is bounded Lp → Lp uniformly in the choice of
signs. (Here we use p > 1 and Calderon-Zygmund theory, or more accurately the Hormander-
Mikhlin theorem.) Thus

||
∑
j

εjfj||Lp .p,d ||
∑
j

fj||Lp .

The claim then follows from Khinchine’s inequality.
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To prove &p,d, use the triangle inequality to split up into two sums, one where the kj are
odd and one where the kj are even. This trick is called sparsification. We work with each
term separately so that |kj − kj′ | > 2 and we meet the hypotheses of .p,d. Now

fj = εjPkj
∑
`

ε`f`,

so
f =

∑
j

εjPkj
∑
`

ε`f`.

Again by Calderon-Zygmund theory,

||
∑
j

fj||Lp .p,d ||
∑
j

εjfj||Lp

and we use Khinchine’s inequality again.

Lemma 20.2. Let f1, . . . , fn have Fourier supports Ω1, . . . ,Ωn. If any ξ lies in at most A2

of the Ωi (“the Ωi have overlap A2”) then

||
∑
j

fj||L2 ≤
√
A2||

√∑
j

|fj|2||L2 .

If Ωi + Ωj have overlap A4 then

||
∑
j

fj||L4 ≤ 4
√
A4||

√∑
j

|fj|2||L4 .

Proof. The first claim follows by using Plancherel to pass to Fourier space and then using
Cauchy-Schwarz.

For the second claim, note that

||
∑
j

fj||2L4 =
∑
ij

fifj||L2

and since fifj has Fourier support Ωi + Ωj this reduces the claim to the first claim.

20.2 Decoupling estimates

Definition 20.3. Let U = {U1, . . . , Un} be a finite multiset of nonempty open sets and let
p ∈ [1,∞]. The decoupling constant Decp(U) is the optimal constant in the inequality

||
∑
j

fj||Lp ≤ Decp(U)

√∑
j

||fj||2

whenever fj has Fourier support in Uj.
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If all but one of the fj vanish we see that Decp(U) ≥ 1, and by Cauchy-Schwarz we have

Decp(U) ≤
√

cardU . Intuitively Decp(U) measures how spread out U is: if they are “more
disjoint” then Decp(U)→ 1.

One can check that if Ui ⊆ U ′i then

Decp(U1, . . . , Un) ≤ Decp(U
′
1, . . . , U

′
n).

We also have a triangle inequality

Decp(U ∪ V) ≤
√

Decp(U)2 + Decp(V)2.

If L is an affine transformation then L preserves Decp, so Decp is dimensionless.
They also interpolate: if p0 ≤ p ≤ p1 and

1

p
=

1− θ
p0

+
θ

p1

,

and
||PUjf ||Lpi .pi,d ||f ||Lpi ,

where PUj is the Littlewood-Paley projector, then

Decp(U) .p0,p1,p,d Decp1(U)1−θ Decp0(U)θ.

If we have partitions Uj =
⊕

i Uj,i into open sets up to measure zero, then

Decp({Uj,i : j, i}) ≤ Decp(U) sup
j

Decp({Uj,i : i}).

We can also add dummy dimensions: if d′ ≥ 1 then

Decp(U) = Decp({Ui × Rd′ : i}).

If p = 2, decoupling is easy: by a previous lemma, if the sets have overlap A2, then

Decp(U) ≤
√
A2.

We now prove L6 decoupling for the parabola.

Theorem 20.4. Let δ > 0, let φ(ξ) = (ξ, ξ2) parametrize the parabola in R2, let Σ be a
δ-separated subset of [−1, 1] and Ω = φ(Σ), and take the parallelograms R(ω, δ) centered on
points ω of Ω with width 2δ, height 2δ2, and slope equal to the slope of the parabola at ω.
Then for any ε > 0,

Dec6({R(ω, δ) : ω ∈ Ω}) .ε δε.

This theorem was proven in the early 2010s by Bourgain and Demeter. We will give an
argument of Li published in 2018. If p > 6 then the above decoupling estimate fails; we omit
the proof of this.

208



To prove the above theorem, if δ > 0 let

D(δ) = sup
Σ

Dec6(R(ω, δ) : ω ∈ φ(Σ))

where Σ ranges over all δ-separated subsets of [−1, 1]. Then

1 ≤ D(δ) . δ−1/2.

This is because in this case we would be decoupling ∼ δ−1 many sets. We must show

D(δ) .ε δ
−ε.

Note that D is not necessarily increasing in δ. If δ increases to δ + ε, we cannot refine the
partition Σδ to a partition Σδ+ε if ε is too small – so we end up with a completely different
partition!

We first show that D is stable.

Lemma 20.5. If δ ∼ δ′ then D(δ) ∼ D(δ′).

Proof. This claim is transitive, so we may actually prove it when δ and δ′ are not symmetrical,
say

10δ ≤ δ′ . δ.

We first show D(δ) . D(δ′), i.e. if Σ is δ-separated then

Dec6(R(ω, δ) : ω ∈ φ(Σ)) . D(δ′).

Using sparsification and the triangle inequality for Dec we may split up Σ into finitely many
pieces, each of which is δ′ separated, and then assume that Σ is δ′-separated. Thus

Dec6(R(ω, δ) : ω ∈ φ(Σ)) . Dec6(R(ω, δ′) : ω ∈ φ(Σ)) . D(δ′).

Conversely, we must show that if Σ′ is δ′-separated then

Dec6(R(ω′, δ′) : ω′ ∈ φ(Σ′)) . D(δ).

That is,

||
∑
ω′

fω′ ||L6 . D(δ)

√∑
ω′

||fω′ ||2L6 ,

for any fω′ ∈ L6(R2) whose Fourier support is in R(ω′, δ′). By breaking up the R(ω′, δ′) into
parallelograms R(φ(ξ), δ) + (0, jcδ2) where j = O(1) is an index and c is a small absolute
constant, and applying Littlewood-Paley projectors, we see the claim.

Lemma 20.6. Let δ ≤ δ0. Let Σ be δ-separated and contained in an interval I of length
2δ0. Then

Dec6(R(ω, δ) : ω ∈ φ(Σ)) . D(δ/δ0).
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Proof. If δ0 ∼ 1 then this follows from the stability lemma. Otherwise, choose an absolute
constant c > 0 and δ0 < c. Acting on the parabola by the Galilean group we may assume I
is centered at 0.

Now rescale the parabola by (ξ1, ξ2) 7→ (ξ1/δ0, ξ2/δ
2
0). This has a nontrivial Jacobian but

it’s not a big deal. Then the claim is

Dec6(R(ω, δ) : ω ∈ φ(Σ)) . Dec6(R(ω, 1) : ω ∈ φ(Σ/δ0)).

Thus we at least have a local induction in scales. In fact it implies

D(δ1δ2) . D(δ1)D(δ2)

by using the triangle inequality to split Σ into small subsets where we can induct on scales.
The trouble is that the implied constant in this estimate could be huge, and so every time
we apply the induction hypothesis we could get a horrible buildup. So we need to replace
this estimate with a slightly better estimate; annoyingly, nobody seems to know how to do
this in general, other than trial and error.

Definition 20.7. Let 0 ≤ δ ≤ ρ1, ρ2 ≤ ν ≤ 1. Let M2,4(δ, ν, ρ1, ρ2) be the best constant
such that for any δ-separated sets Σ1,Σ2 contained in intervals I1, I2 of lengths ρ1, ρ2, such
that d(I1, I2) ≥ ν, and fω1 , gω2 collections of Schwartz functions whose Fourier support is
contained in R(ω1, δ), R(ω2, δ),∫

R2

|
∑

ω1∈φ(Σ1)fω1

|2|
∑

ω2∈φ(Σ2)

|4 ≤M2,4(δ, ν, ρ1, ρ2)6
∑

ω1∈φ(Σ1)

||fω1||2L6

∑
ω2∈φ(Σ2)

||gω2||2L6

We might as well think of ν = 1 but it is convenient to be able to perturb it. Confusingly,
we want to hold δ fix and induct on ρ. The reason for this madness is because we want to
use Hilbert space theory, and this is possible because of the sum of squares in fω1 . Otherwise
we would use 3 + 3 instead of 2 + 4. In fact the L4 term will look like a constant and then
this reduces to basic facts about L2.

By Holder, we have∫
R2

|
∑

ω1∈φ(Σ1)fω1

|2|
∑

ω2∈φ(Σ2)

|4 ≤ ||
∑
ω1

fω1||2L6||
∑
ω1

||4L6 .

Therefore
M2,4(δ, ν, ρ1, ρ2) ≤ D(δ).

We will mainly be interested in when ρ1 = ρ2 = ν & 1.

Lemma 20.8. If 0 ≤ δ ≤ ν ≤ 1 then

D(δ) . ν−O(1)M2,4(δ, ν, ν, ν) +D(δ/ν).
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In this scenario, the ν−O(1) ≈ 1 and D(δ/ν) terms are basically irrelevant and so, heuris-
tically, this lemma says that

D(δ) .M2,4(δ, ν, ν, ν)

which is what we want, because since the L4 term is basically a constant, this reduces the L6

decoupling problem to an L2 problem. This gives a hint as to why 6 is the optimal exponent.

Proof. Let Σ be a δ-separated subset of [0, 1] and for each ω ∈ φ(Σ), let fω ∈ L6 have Fourier
support in R(ω, δ). Normalizing, we assume

∑
ω ||fω||2L6 = 1. We then must show∫

R2

|
∑
ω

fω|6 . ν−O(1)M2,4(δ, ν, ν, ν)6 +D(δ/ν)6.

Partition Σ into components ΣI where each ΣI is contained in some subinterval I of [−1, 1]
of length ν. Let I index the intervals, so card I = O(1/ν). Then

|
∑

ω∈φ(Σ)

fω(x)| ≤
∑
I∈I

|
∑

ω∈φ(ΣI)

fω(x)|.

Then for each x, the pigeonhole principle furnishes an Ix such that

|
∑

ω∈φ(Σ)

fω(x)| . |
∑

ω∈φ(ΣI)

fω(x)|,

the “narrow case”, or there are I, J such that d(I, J) ≥ ν and

|
∑

ω∈φ(Σ)

fω(x)| . ν−O(1)|
∑

ω∈φ(ΣI)

fω(x)||
∑

ω∈φ(ΣJ )

fω(x)|.

In particular,

|
∑

ω∈φ(Σ)

fω(x)| . ν−O(1)
∑

d(I,J)≥ν

|
∑

ω∈φ(ΣI)

fω|2|
∑

ω∈φ(ΣJ )

fω|4 +
∑
I

|
∑

ω∈φ(ΣI)

fω|6.

By definition, ∫
R2

∑
ω∈φ(ΣI)

fω|2|
∑

ω∈φ(ΣJ )

fω|4 .M2,4(δ, ν, ν, ν).

Meanwhile, by the parabolic rescaling estimate,∫
R2

|
∑

ω∈φ(ΣI)

fω|6 . D(δ/ν)6(
∑

ω∈φ(ΣI)

||fω||2L6)3

but by our normalization, after summing over I, this implies that∑
I

∫
R2

|
∑

ω∈φ(ΣI)

fω|6 . D(δ/ν)6.

211



Thus if we can get a good estimate in the endpoint case ρ1 = ρ2 = ν we are in good
shape, as

D(δ) ≈M2,4(δ, ν, ν, ν)

when ν is much larger than δ. On the other hand it’s only easy to estimate M2,4(δ, ρ1, ρ2, ν)
when ρ1, ρ2 are very small.

Our next lemma allows to assume that one of the ρ’s is very small:

Lemma 20.9. Suppose 0 ≤ δ ≤ ρ2
2 ≤ ρ′1 ≤ ρ1 ≤ ν ≤ 1 and δ ≤ ρ2 ≤ ν then

M2,4(δ, ν, ρ1, ρ2) . ν−O(1)M2,4(δ, ν, ρ′1, ρ2).

Proof. It suffices to show that∫
R2

|
∑

ω1∈φ(Σ1)

fω1|2|
∑

ω2∈φ(Σ2)

gω2|4 . ν−O(1)M2,4(δ, ν, ρ1, ρ2)6

whenever Σ1,Σ2 are of the appropriate lengths ρ1, ρ2 and separation δ, ν and the fωi , gωi have
Fourier support in R(ωi, δ). Here we normalize∑

ω1

||fω1||2L6 = ||
∑
ω2

gω2||4L6 = 1.

We are viewing the integral we are trying to bound as a weighted sum of L2-norms where
the L4-norms are weights.

Partition Σ1 into δ-separated subsets Σ1,I′ of intervals I ′ of length ρ′1 of bounded overlap.
The left-hand side of the claim is given by ||

∑
I′ FI′G

2||2L2 where FI′ =
∑

ω1∈φ(Σ1,I′ )
fω1 and

G =
∑

ω2
gω2 . But

||FI′G2||2L2 ≤M2,4(δ, ν, ρ′1, ρ2)
∑
ω1

||fω1 ||2L6 .

So we must prove

||
∑
I′

FI′G
2||2L2 . ν−O(1)

∑
I′

||FI′G2||2L2 .

After a Galilean transform we may assume J is centered at 0 and thus I is at least
& ν from the origin. In this setting G is Fourier supported on a small rectangle of height
O(ρ2

2 + δ), so it is almost constant in the vertical direction. A copmutation I missed means
this implies the lemma.

Lemma 20.10. For any 0 ≤ δ ≤ ρ1 ≤ ρ2 ≤ ν ≤ 1,

M2,4(δ, ν, ρ1, ρ2) .
√
M2,4(δ, ν, ρ2, ρ1)D(δ/ρ2).

This follows by Hoelder’s inequality. In fact, if f is the sum of the fω, ω ∈ φ(I1) where
|I1| = ρ1 and similarly for g and ρ2, this lemma is equivalent to the inequality∫

R2

|f |2|g|4 ≤
∫
R2

|f |4|g|2
∫
R2

|g|6.
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This is true by the L6 version of Hoelder, if we normalize ||f ||L6 = ||g||L6 = 1 and then
rescale appropriately. This allows us to induct on the scales ρj by ping-ponging back and
forth between ρj.

Let α be the least exponent such that for every δ > 0, D(δ) ≤ δ−α−o(1). Then

α = lim sup
δ→0

− logD(δ)

log δ
.

Lemma 20.11. One has α = 0.

Proof. Suppose not; we will find an α′ such that D(δ) ≤ δ−α
′−o(1), a contradiction.

Let ν = δε for some ε > 0 which is independent of δ and to be chosen later. Then

D(δ) . δ−O(ε)M2,4(δ, ν, ν, ν) + δ(−1−ε)α−o(1).

Since α > 0, the second term is harmless. We then need to control the first term.
By an above lemma,

M2,4(δ, ν, ν, ν) . δ−O(ε)M2,4(δ, ν, ν2, ν).

If a ≤ O(ε−1), we have

M2,4(δ, ν, ν2a, νa) ≤M2,4(δ, ν, νa, ν2a)1/2D(δ/νa)1/2

and
D(δ/νa)1/2 . (δ/νa)−(δ+o(1))/2 = δ−α/2+aαε/2−o(1).

Thus
M2,4(δ, ν, ν2a, νa) .M2,4(δ, ν, ν2a, νa)1/2δ−α/2−o(1)δaαε/2

and by an above lemma,

M2,4(δ, ν, ν2a, νa) . ν−O(1)M2,4(δ, ν, ν4a, ν2a)1/2δ−α/2−o(1)δaαε/2,

or
(δαM2,4(δ, ν, ν2a, νa))1/a . (δαM2,4(δ, ν, ν4a, ν2a))1/2aδαε/2−O(ε/a)−o(1).

Here if a is large then we gain a small power of δε. If k ≤ − log2(4ε) then

δαM2,4(δ, ν, ν2, ν) .k (δαM2,4(δ, ν, ν2k+1

, ν2k))2−kδkαε −O(ε)− ok(1).

Here ok(1) is a constant that → 0 as δ → 0 as k, ε are held constant. Thus

δαM2,4(δ, ν, ν2, ν) . δkαε/2−O(ε)−o(1)

or
D(δ) . δ−α+kεα/2−O(ε)+o(1) + δ(ε−1)α+o(1).

This gives the desired contradiction.

This completes the proof of the main theorem.
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Chapter 21

Pseudodifferential calculus

Let S denote the Schwartz space of R. Consider the position and momentum operators
X,D : S → S. We normalize them by Xf(x) = xf(x) and Df(x) = f ′(x)/(2πi). Previously
we have taken physical space and frequency space as separate but isomorphic, with the
isomorphism R → R sending X to D. But now we will be interested in considering the
“phase space”, where we work with position and momentum together. This should be
viewed as analoguous to how in music theory we indicate notes by their place in time, and
their frequncies.

However, there is no perfectly rigorous phase space, by the uncertainty principle: we
cannot describe a point in phase space arbitrarily well because then it would be a point in
physical space, hence is delocalized to frequency space.

21.1 The Kohn-Nirenberg quantization

We are interested in developing a functional calculus for the unbounded operators X,D.
This is easy for polynomials; for example, the quantum harmonic oscillator D2 + X2 is a
polynomial in X,D. Intuitively this should be associated to the polynomial

a(x, ξ) = ξ2 + x2,

and then we write a(X,D) for the quantum harmonic oscillator.
In general, given some function a of phase space, we let

a(X,D)f(x) =

∫ ∞
−∞

a(x, ξ)f̂(ξ)e2πiξ dξ

be the induced Fourier multiplier. The map a 7→ a(X,D) is called the Kohn-Nirenberg
quantization of the symbol a. This is at first defined for f ∈ S and

∂jx∂
`
ξa(x, ξ) .a,j 〈x〉Oa,j,`(1)〈ξ〉Oa,j,`(1).

More generally, a functional calculus for functions defined on phase space is known as a
quantization of phase space. Most interesting observables from quantum mechanics are in
fact given by the Kohn-Nirenberg quantization.
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We denote the seminorms of S by

||u||α,β = sup
x
|xα∂βu(x)|.

Lemma 21.1. If a satisfies the above estimates then a(X,D) is a bounded operator on S.

Proof. Let f ∈ S and α, β be given; we must show that ||a(X,D)f ||α,β is bounded by finitely
many Schwartz seminorms of f . By the Leibniz rule,

||a(X,D)f ||α,β = sup
x

∣∣∣∣xα∂β ∫ ∞
−∞

a(x, ξ)f̂(ξ)e2πixξ dξ

∣∣∣∣
.β sup

x

∑
γ≤β

∣∣∣∣xα ∫ ∞
−∞

(∂γxa)(x, ξ)f̂(ξ)ξβ−γe2πixξ dξ

∣∣∣∣ .
We treat each of these integrals separately. Since everything is Schwartz we can integrate
by parts to get, for any µ,∫ ∞

−∞
(∂γxa)(x, ξ)f̂(ξ)ξβ−γe2πixξ dξ =

(−1)µ

(2πix)µ

∫ ∞
−∞

∂µξ ((∂γxa)(x, ξ)f̂(ξ)ξβ−γ)e2πixξ dξ.

Since ∂νξ ∂
γ
xa is of polynomial growth in ξ for any ν ≤ µ and f̂ is Schwartz (in fact f 7→ f̂ is

bounded on S) we have∣∣∣∣∫ ∞
−∞

∂µξ ((∂γxa)(x, ξ)f̂(ξ)ξβ−γ)e2πixξ dξ

∣∣∣∣ .a,β,µ ∑
δ,δ′≤Cβ,µ

||f ||δ,δ′ .

Therefore ∣∣∣∣∫ ∞
−∞

(∂γxa)(x, ξ)f̂(ξ)ξβ−γe2πixξ dξ

∣∣∣∣ .a,β,µ 〈x〉−µ ∑
δ,δ′≤Cβ,µ

||f ||δ,δ′ .

Taking µ = α,

||a(X,D)f ||α,β .a,α,β
∑

δ,δ′≤Cβ,α

||f ||δ,δ′ .

Since Cβ,α <∞ this is as desired.

Lemma 21.2. If a, b are symbols such that a(X,D) = b(X,D) then a = b.

Proof. If a(X,D) = b(X,D) then for every f ∈ S,∫ ∞
−∞

(a(x, ξ)− b(x, ξ))f̂(ξ)e2πixξ dξ = 0.

In particular this is true when

f(ξ) = e2πiξyχ(ξ)g(y, ξ)

where χ is a smooth approimation to the indicator function of [−N,N ], y ∈ R is to
be determined, and g(y, ξ) is a smooth approximation to the function which is 1 when

215



a(x, ξ)/b(x, ξ) > 0 and −1 otherwise. Plugging in y = x and taking the limits as the
approximations become rough, we have

lim
N→∞

∫ N

−N
|a(x, ξ)− b(x, ξ)| dξ = 0.

But this implies that a = b.

A fundamental defect with any quantization is that it is not an algebra morphism:

ab(X,D) 6= a(X,D)b(X,D).

This is because [x, ξ] = 0 but 2πi[X,D] = −1. This motivates semiclassical analysis, because
in the limit where frequency is very large, [X,D]→ 0, and this is formalized by introducing
a semiclassical parameter h and taking h → 0. As a useful consequence of 2πi[X,D] = −1
we prove the Heisenberg uncertainty principle:

Theorem 21.3 (Heisenberg uncertainty principle). If x, ξ ∈ R and f ∈ S, then

||(X − x)f ||L2||(D − ξ)f ||L2 ≥
||f ||2L2

4π
.

Proof. By the Cauchy-Schwarz inequality we have

|〈[X − x]f, [D − ξ]f〉| ≤ ||(X − x)f ||L2||(D − ξ)f ||L2 .

Since x, ξ commute with everything, [X − x,D − ξ] = [X,D] = −1/2πi. So

|〈[X − x,D − ξ]f, f〉| =
||f ||2L2

2π
.

But also

2|〈[X − x]f, [D − ξ]f〉| = |〈[X − x,D − ξ]f, f〉| =
||f ||2L2

2π

since X is self-adjoint while D is anti-self-adjoint.

Physically, ||(X − x)f ||L2/||f ||L2 should be viewed as the variance ∆x of the observable
X when applied to the wavefunction f . Similarly for ∆ξ. So the Heisenberg uncertainty
principle says

(∆x)(∆ξ) ≥ 1

4π
.

The intuitive reason for the uncertainty principle is that f is a function of one variable,
yet we want to view it as a function of phase space (two variables), yet there is no smooth
bijection R→ R2.

Fortunately, ab(X,D) ≈ a(X,D)b(X,D) where ≈ means “equal up to lower order terms”
here. For example [X,D] is a zeroth-order operator. We need certain estimates on the growth
of the symbol to make “lower order terms” a rigorous definition, and then prove the above
approximate commutativity relation.

There are other interesting quantizations, but they essentially behave equivalently to the
Kohn-Nirenberg quantization, so we restrict to this quantization in what follows.
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Definition 21.4. Let α ∈ R. A symbol a has order α if it is smooth and

∂jx∂
`
ξa(x, ξ) .a,j,` 〈ξ〉α−`.

We let Sα denote the space of all symbols of order α. In this case we say a(X,D) is known
as an pseudodifferential operator of order α.

Thus if a ∈ Sα, then a(x, ξ) is bounded in x and grows like ξα, even after it is differen-
tiated. If one tiles phase space by rectangles which have x-width 1 and ξ-width ∼ ξ, then a
restricted to any rectangle is approximately constant. Thus at high frequencies ξ →∞, the
effect of the uncertainty principle is unimportant, since there a is so close to constant that
we can localize it quite well.

We let

||a||α,j,` = sup
x,ξ

∂jx∂
`
ξa(x, ξ)

〈ξ〉α−`

denote the (j, `)th Hormander seminorm for symbols of order α. For example, fractional
differential operators are pseudodifferential operators.

A smooth linear differential operator is a pseudodifferential operator provided that its
coefficients are bounded.

Example 21.5. The quantum harmonic oscillator D2 + X2 is not a pseudodifferential op-
erator but it is locally a pseudodifferential operator of order 0.

21.2 The Calderon-Vallaincourt theorem

We start by proving a generalization of the Hormander-Mikhlin multiplier thoerem which
shows that pseudodifferential operators of null order are bounded on Lp. The assumption on
order is best-possible here; clearly X,D are not bounded on Lp for any p, and this remains
for fractional operators such as Dε.

Theorem 21.6 (Calderon-Vallaincourt). Every pseudodifferential operator of order 0 ex-
tends to a bounded operator on L2.

Actually, we can use Calderon-Zygmund theory to extend to this to Lp: once a Calderon-
Zygmund operator is bounded on Lq for some q, it is bounded on Lp for every p. But we
omit the proof.

We will give two proofs of the Calderon-Vallaincourt theorem, both of which use se-
quences of operators which are “almost orthogonal.” One way to quantify the extent to
which operators are almost orthogonal is if they meet the hypotheses of the Cotlar-Stein
lemma:

Lemma 21.7 (Cotlar-Stein). Suppose that T1, . . . , Tn : H → H ′ are linear operators such
that the maps T ∗i Tj : H → H satisfy the estimate∑

j

||T ∗i Tj||1/2 ≤ A
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uniformly in i and similarly the TiT
∗
j : H ′ → H ′ satisfy the estimate∑
j

||TiT ∗j ||1/2 ≤ B

uniformly in j. Then

||
∑
j

Tj|| ≤
√
AB.

Proof. Since B(H) is a C∗-algebra we have

||Ti|| = ||TiT ∗i ||1/2 ≤ A.

Similarly ||Ti|| ≤ B and hence ||Ti|| ≤
√
AB, the geometric mean. We want to iterate this

estimate.
Let T =

∑
j Tj. Iterating and using the fact that B(H) is a C∗-algebra again, we see

that
||T || ≤ ||(T ∗T )m||1/(2m).

This is in particular true when m is a power of 2. We have the bound

||T || ≤ 2m

√∑
j

||T ∗i1Ti2 · · ·T
∗
i2m−1

Ti2m||.

Here the ij are a substring of some permutation of n. We split this up as

||T || ≤ 2m

√∑
j

||T ∗i1Ti2|| · · · ||T
∗
i2m−1

Ti2m||.

This gives a bound ||T || ≤ n1/2mA. Similarly we can bound ||T || ≤ n1/2mB. Taking geometric
means we have

||T || ≤ n1/2m
√
AB,

and iterating we see ||T || ≤
√
AB.

If the Ti have pairwise orthogonal images then T ∗i Tj = 0 whenever i 6= j; similarly for
the adjoints. So if A,B are minimal possible (say A =

∑
j ||Ti||2) then the operators Ti are

actually orthogonal, and the size of A measures “how orthogonal” they are.
The Cotlar-Stein lemma also has a useful corollary, which we will not need for the

Calderon-Vallaincourt theorem.

Corollary 21.8. Suppose that we have a sequence of operators Ti : H → H ′ satisfying the
bounds ∑

j≤J

||T ∗i Tj||1/2 ≤ A

uniformly in i, J and similarly ∑
i≤I

||TiT ∗j ||1/2 ≤ B

uniformly in I, j. Then the infinite series T =
∑

j Tj converges in the weak operator topology,
and

||T || ≤
√
AB.
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Proof. The estimate on the infinite series follows from the fact that the estimate is uniformly
true on partial sums by the Cotlar-Stein lemma. Now we must show that if f ∈ H, g ∈ H ′,
then ∑

i

〈g, Tif〉

is a convergent series. Suppose not, so there are f, g such that for every C > 0 there is an
I ∈ N such that ∣∣∣∣∣∑

i≤I

〈g, Tif〉

∣∣∣∣∣ > C.

This is in particular true when C = ||f ||||g||
√
AB, which is a contradiction by the Cotlar-

Stein lemma.

We can actually prove convergence in the strong operator topology, but omit the proof.
Now recall that a symbol of order 0 is a smooth function a : R2 → R such that ∂xa(x, ξ)

is bounded and ∂`ξa(x, ξ) = O(ξ−`). Let a be a symbol of order 0.
We want to run a Littlewood-Paley decomposition on a, because these hypotheses imply

that a is “approximately constant” on each of the dyadic pieces of R. Let φ be a bump
function on [−1, 1] which is 1 on [−1/2, 1/2] and consider the Littlewood-Paley decomposition

a =
∑
k

ak

where a0 = a(x)φ and

ak(x, ξ) = (φ(ξ/2k)− φ(ξ/2k+1))a(x, ξ).

To avoid technicalities, we don’t want to have to worry about the infinite sum; by Fatou’s
lemma, we must then show

||
∑
k≤K

ak(X,D)||L2 .a ||f ||L2

uniformly in K. Each ak lives on a strip of (x, ξ) where ξ ∼ 2k. Then

∂jx∂
`
ξak(x, ξ) .a,j,` 2−k`.

Therefore

Kk(x, y) =

∫ ∞
−∞

ak(x, ξ)e
2πi(x−y)ξ dξ

has compact support and hence is the integral kernel of ak(X,D) by Fubini’s theorem.
We bound Kk. First, ak is bounded and supported on the interval [2k, 2k+1] of length 2k

so by the triangle inequality,

|Kk(x, y)| ≤ ||ak(x)||L1 .a 2k.

Integrating by parts in ξ,

Kk(x, y) =
−1

2πi(x− y)

∫ ∞
−∞

∂ξak(x, ξ)e
2πi(x−y)ξ dξ .a

2k

2k|x− y|
.
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Iterating and using the previous bound to prevent blowup,

|Kk(x, y)| .a,`
2k

〈2−`k|x− y|`
.

We now bound ∂xKk(x, y). If the derivatives fall on ak nothing happens. If they fall on
the phase, we gain a term 2πiξ, but ξ ∼ 2k, so we lose a factor of 2k. Running the above
argument again,

|∂xKk(x, y)| .a,`
22k

〈2−`k|x− y|`
.

The same thing happens for ∂y. It follows from Young’s inequality that

||ak(X,D)||L2→L2 .a 1.

It remains to remove the dependence on the number of terms in the Fatou sum K. To prove
this uniform bound we will show that the ak(X,D) have “almost orthogonal” ranges and
coranges (i.e. row spaces), in two different ways.

First proof. We claim

||ak(X,D)aj(X,D)∗f ||L2 .a 2−|j−k|||f ||L2

and similarly for ak(X,D)∗aj(X,D)∗f . The Cotlar-Stein lemma then gives the theorem.
Assume j ≤ k and work with ak(X,D)aj(X,D)∗; the other three cases are similar.

By Fubini’s theorem,

Kkj∗(x, z) =

∫ ∞
−∞

Kk(y, x)Kj(y, z) dy

is the integral kernel of ak(X,D)aj(X,D)∗. We want to bound it using integration by parts.
First,

Kj(y, z) = ∂y

∫ ∞
−∞

aj(y, ξ)

2πiξ
e2πi(y−z)ξ dξ −

∫ ∞
−∞

∂yaj(y, ξ)

2πiξ
e2πi(y−z)ξ dξ.

The second term here is harmless since a is a symbol; we have∫ ∞
−∞

∂yaj(y, ξ)

2πiξ
e2πi(y−z)ξ dξ ∼a 2−j

∫ ∞
−∞

aj(y, ξ)e
2πi(y−z)ξ dξ

since we have a ξ in the denominator and are integrating over [2j, 2j+1]. Thus∫ ∞
−∞

Kk(y, x)

∫ ∞
−∞

∂yaj(y, ξ)

2πiξ
e2πi(y−z)ξ dξ ∼ 2−j+k.

This was desired. Similarly,∫ ∞
−∞

Kk(y, x)∂y

∫ ∞
−∞

aj(y, ξ)

2πiξ
e2πi(y−z)ξ dξ dy = −

∫ ∞
−∞

∂yKk(y, x)

∫ ∞
−∞

aj(y, z)

2πiξ
e2πi(y−z)ξ dξ dy ∼ 2−j+k.

Here we used the fact that we took a complex conjugate to get ξ in the numerator when we
differentiated k.
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Second proof. Consider the integral kernel

Lj(z, x) =

∫ 2j+1

2j
e2πi(z−x)ξ dξ

of the Littlewood-Paley projector Pj to the scale [2j, 2j+1]. Let Fjk be the integral kernel of
the composite

Fjk(z, y) =

∫ ∞
−∞

Lj(z, x)Kk(x, y) dx

=

∫ ∞
−∞

∫ 2k+1

2k

∫ 2j+1

2j
ak(x, η)e2πi(x−y)ηe2πi(z−x)ξ dξ dη dx.

We used the Fourier support property of ak.

Lemma 21.9. One has
||Fjk||L2 .a 2−|j−k|.

Proof. Note that

||Fjk||2L2 =

∫∫
R2

∣∣∣∣∣
∫ ∞
−∞

∫ 2k+1

2k

∫ 2j+1

2j
ak(x, η)e2πi(x−y)ηe2πi(z−x)ξ dξ dη dx

∣∣∣∣∣
2

dy dz.

We now integrate by parts in dx to see∫ ∞
−∞

∫ 2k+1

2k

∫ 2j+1

2j
ak(x, η)e2πi(x−y)ηe2πi(z−x)ξ dξ dη dx =

∫ ∞
−∞

∫ 2k+1

2k

∫ 2j+1

2j
∂x(ak(x, η)e2πi(z−x)ξ)

e2πi(x−y)η

2πiη
dξ dη dx.

We have ∂xak(x, η) .a 1 and ak(x, η) .a 1. Similarly we have η ∼ 2k and ξ ∼ 2j, so the
triple integral is

.a
1 + 2j

2k

∫ ∞
−∞

∫ 2k+1

2k

∫ 2j+1

2j
e2πi(z−x)ξe2πi(x−y)η dξ dη dx.

This new triple integral is

.a

∫ ∞
−∞

e2j+kπix

〈(x− y)(x− z)〉
dx

whose L2 norm is .a 1. Therefore if k ≥ j the L2 norm is .a 2−|k−j|. The proof is similar
when j ≥ k, but we want to differentiate e2πi(x−y)η instead.

We conclude that
||Pjak(X,D)|| .a 2−|k−j|.

Similarly for ak(X,D)Pj, where the roles of η and ξ in the above proof are swapped. TODO
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21.3 Composition estimates

Lemma 21.10. Let a(X,D) and b(X,D) be pseudodifferential operators of order α, β re-
spectively. Then the composite a(X,D)b(X,D) is a pseudodifferential operator of order
α + β.

Definition 21.11. The symbol of the composite a(X,D)b(X,D) is denote a ∗ b.

Proof of lemma. We let
aR(x, ξ) = a(x, ξ)φ(x/R)φ(ξ/R)

where φ is a standard bump function; then the aR obeys the same symbol estimates as a
uniformly in R, and aR → a locally uniformly as R → ∞. If f is Schwartz, then b(X,D)f
is as well, so aR(X,D)b(X,D)f converges pointwise to a(X,D)b(X,D)f .

Suppose that aR(X,D)b(X,D) = cR(X,D) is a pseudodifferential operator with order
uniform in R. Then the Ascoli theorem guarantees that there is a limit c(X,D) of a subse-
quence cR(X,D) as R → ∞, and then c(X,D) is a limit of not just a subsequence but the
full sequence. Here we are taking limits in the weak operator topology, which is all we need
because we just require that limits be unique, and the weak operator topology is Hausdorff.
By a similar argument, we can replace b(X,D) with bR(X,D). So we may assume that a, b
are compactly supported, and hence justify any use of Fubini’s theorem.

We have
̂b(X,D)f(η) =

∫∫
R2

b(y, ξ)f̂(ξ)e2πi(yξ−yη) dξ dy

hence

a(X,D)b(X,D)f(x) =

∫∫∫
R3

a(x, η)b(y, ξ)f̂(ξ)e2πi(yξ−yη+xη) dξ dy dη.

By Fubini’s theorem,

a ∗ b(x, ξ) =

∫∫
R2

a(x, η)b(y, ξ)e2πi(y−x)(ξ−η) dy dη.

We must now show the symbol estimate

∂jx∂
`
ξ(a ∗ b)(x, ξ) .a,b,α,β,j,` 〈ξ〉α+β−`.

We readily check
∂x(a ∗ b) = ∂x ∗ b+ a∂xb,

and similarly in ξ. Moreover ∂x sends Sα to itself and ∂ξ sends Sβ to Sβ−1. So by induction
in j and another in `, we see that we just need to check the case j = ` = 0, i.e.

(a ∗ b)(x, ξ) .a,b,α,β,j,` 〈ξ〉α+β.

We bound a ∗ b using the method of stationary phase.
Applying a smooth partition of unity to a in the frequency variable, we split a into two

functions, one supported on the set of (x, η) such that 〈ξ〉 ∼ 〈η〉, and its complement. This
cutoff preserves the symbol estimates for a.
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We now treat the case 〈ξ〉 ∼ 〈η〉. Let

Kx(z) =

∫ ∞
−∞

a(x, η)e2πixη dη,

and then we have

(a ∗ b)(x, ξ) =

∫ ∞
−∞

Kx(x− y)b(y, ξ)e2πi(y−x)ξ dy.

Integrating by parts and using our case assumption,

Kx(z) .a,α 〈ξ〉α+1〈zξ〉−2.

Since we have the estimate b(y, ξ) .b 〈ξ〉β, the claim follows.
In the other case,

(a ∗ b)(x, ξ) =

∫∫
R2

a(x, η)

(2πi(η − ξ))m
∂my b(y, ξ)e

2πi(y−x)(ξ−η) dy dη.

This follows by iterated integration by parts. Let

Kx,m(z) =

∫ ∞
−∞

a(x, η)

(2πi(η − ξ))m
e2πizη dη,

so

(a ∗ b)(x, ξ) =

∫ ∞
−∞

Kx,m(x− y)∂my b(y, ξ)e
2πi(y−x)ξ dy,

and if m is large enough we have

Kx,m(z) .a,α 〈〈ξ〉α+1〈zξ〉−2

as before.

Example 21.12. If a(x, ξ) = a(x) and similarly for b,

(a ∗ b)(x, ξ) = a(x)

∫∫
R2

b(y)e2πi(y−x)(ξ−η) dy dη = a(x)b(x)

by the Fourier inversion formula, as we would hope.
If a(x, ξ) = a(ξ) and similarly for b, we similarly have a ∗ b = ab.

Theorem 21.13. Let a ∈ Sα, b ∈ Sβ. Then a ∗ b− ab ∈ Sα+β−1.
Moreover, a ∗ b− ab− ∂ξa∂xb ∈ Sα+β−2.

TODO Prove me.
Higher-order versions of this theorem are also true.

Corollary 21.14 (quantum correspondence). Let {·, ·} denote the Poisson bracket and
a, b ∈ Sα, Sβ respectively. Then

[a(X,D), b(X,D)]− {a, b}(X,D) ∈ Sα+β−1.

223



TODO Prove me.
This suggests that if we view a symbol a as a classical observable, then a(X,D) is its

quantization. In semiclassical analysis we are interested in the extremely high frequency
regime, where lower-order symbols are negligible. The correspondence principle says that in
the extremely high frequency regime, classical and quantum mechanics behave identically.

Corollary 21.15. Let a ∈ Sα. If a is compactly supported then the function ã,

ã(x, ξ) =

∫∫
R2

a(y, η)e2πi(x−y)(η−ξ) dy dη,

is a symbol of order α and ã(X,D) is the adjoint of a(X,D).
In particular, even if a is not compactly supported, there is a unique pseudodifferential

operator a(X,D)∗ of order α which is the adjoint of a(X,D). Moreover, a(X,D)∗−a(X,D)
is a pseudodifferential operator of order α− 1.

21.4 The Gabor transform
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Part VI

General relativity
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Chapter 22

Lorentzian geometry

Lorentzian geometry is a generalization of Riemannian geometry that was motivated by
physical axioms.

22.1 Axioms of special relativity

Definition 22.1. A reference frame is a coordinate system for R4 = R × R3. A reference
frame is said to be inertial if the motion of a body without external influence forms a straight
line in R4. Otherwise, the reference frame is said to be accelerated .

Axiom 22.2. All laws of physics are invariant under change of inertial reference frame.

Axiom 22.3. The speed of light in a vacuum is invariant under change of inertial reference
frame.

We denote the speed of light in a vacuum by c.

22.2 Lorentz transformations

Definition 22.4. A Lorentz transformation is a smooth transformation which fixes the
origin and is homotopic to the identity, which carries an inertial reference frame to an
inertial reference frame.

Definition 22.5. Let p = (t, x), q = (t′, x′) ∈ R4. The spacetime interval ∆s = [p, q]
between p, q is the distance

∆s2 = ∆x2 − c2∆t2

where ∆t = t′ − t and ∆x = x′ − x.

It is not hard to check that Lorentz transformations are linear (since they preserve
straight-line trajectories). Moreover, spacetime intervals are also preserved by Lorentz trans-
formations. By the second axiom of relativity, the quadratic polynomials associated to ∆s
and its Lorentz transform, say ∆s′, have the same roots. So there is an α 6= 0 such that

(∆s)2 = α(∆s′)2.
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Moreover, this constant appears for any choice of s, s′, so by “reciprocity”, α2 = 1. Since
Lorentz transformations are homotopic to the identity, which clearly has α > 0, we have
α = 1. Therefore the claim holds.

Example 22.6 (twin paradox). Let A,B be two twins born in space. They are separated
at birth (spacetime P ), and B moves away from A but then suddenly turns around (at
spacetime Q) and meets A again (at spacetime R). Then it appears that both A is older
than B (from the point of view of A) and B is older than A (from the point of view of B).
However, one can check that in fact A is older than B, since B had an accelerated reference
frame (when he turned around at Q) and so has an incorrect perception of the universe.
This can be checked using the spacetime interval invariance.

Let us consider the Lorentzian metric

ds2 = dx2 − c2dt2,

where as usual we write s = (t, x) ∈ R× R3 = R4 for a point in spacetime. This is a linear
combination of the Riemannian metrics dx2 and dt2. We will also write m for the indefinite
quadratic form induced by ds2 on the tangent bundle. On the other hand we will write δ
for the positive-definite quadratic form induced by the Riemannian metric dx2. Therefore
(R3, δ) is just Euclidean space.

Definition 22.7. A Lorentzian manifold is a smooth manifold equipped with a smoothly
varying quadratic form on each tangent space. The Lorentzian manifold (R4,m) is known
as Minkowski spacetime.

Now let γ be a curve in R4, which we think of as parametrized by [0, 1]. We denote the
tangent vector by γ̇.

Definition 22.8. The proper time of the curve γ is∫ 1

0

√
−m(γ̇(σ), γ̇(σ))

c
dσ.

Definition 22.9. Let v be a tangent vector over R4. If m(v, v) < 0, we say that v is timelike.
If m(v, v) = 0, then v is lightlike or null . Otherwise, v is spacelike. If v is not spacelike, we
say that v is causal . If every tangent vector to a curve is timelike (lightlike, etc.), we say
that the curve itself is timelike (lightlike, etc.)

Notice that a vector v has speed ≤ c iff v is causal. So causal curves are those trajectories
of objects which are allowed by the laws of physics.

22.3 Riemannian geometry

We dive deeper into Lorentzian geometry. Throughout this chapter we fix a Lorentzian
spacetime (M, g). In other words, (M, g) is locally isomorphic as a Lorentzian manifold to
the Minkowski spacetime (R4,m). We always assume that M is orientable.
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Throughout these notes we use Einstein’s conventions that a repeated index is summed
over:

ωµv
µ = 〈ω, v〉.

We let {∂0, . . . , ∂3} be the standard basis of the tangent bundle TM , and {dx0, . . . , dx3} be
the standard basis of the cotangent bundle T ∗M . Thus we have a pairing

dxµ∂ν = δµν .

Definition 22.10. A (p, q)-tensor at x ∈ M is an element of (T ∗xM)⊗p ⊗ (TxM)⊗q. A
(p, q)-tensor field is a section of the tensor bundle

(T ∗M)⊗p ⊗ (TM)⊗q →M.

In local coordinates, we write
T β1,...,βq
α1,...,αp

(x)

for the (α1, . . . , αp; β1, . . . , βq)th coordinate of a (p, q)-tensor field evaluated at x.
We now need the notion of a linear connection. A linear connection, morally, is a “way

to differentiate a vector field against another vector field.” Let T (M) denote the space of
vector fields M → TM .

Definition 22.11. A linear connection is a (C∞(M),R)-bilinear map ∇ : T (M)2 → T (M),
written (X, Y ) 7→ ∇XY (though we write ∇α = ∇∂α) satisfying the Leibniz rule

∇X(fY ) = (∇Xf)Y + f∇XY = df(X)Y + f∇XY.

Let’s consider the easy example of a Euclidean connection.

Definition 22.12. Assume (M, g) is Euclidean space. The Euclidean connection on M is
the linear connection

∇XY
j∂j = XY j∂j.

Since X is a first-order derivation at each point, XY j is the partial derivative of Y in the
direction of X. Thus Euclidean connections are a very natural thing to study, and in case
X = ∂α, ∇X is just the map that sends Y to its derivative in some direction. The Euclidean
connection has the useful property that ∇g = 0.

Definition 22.13. The Levi-Civita connection ∇ is the unique connection on M such that
∇g = 0 and which satisfies ∇XY −∇YX = [X, Y ].

Theorem 22.14. The Levi-Civita connection is well-defined.

Definition 22.15. The Riemann curvature tensor is the (3, 1)-tensor field

Rδ
αβγ∂δ = ∇α∇β∂γ −∇β∇α∂γ.

It is pretty clear that
Rδ
αβγ = −Rδ

βαγ,

and
Rαβγδ = Rαβδγ.
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Theorem 22.16 (Bianchi). One has

Rαβγδ +Rβγαδ +Rγβαδ = 0

and
∇αRβγδε +∇βRγαδε +∇γRαβδε = 0.

Definition 22.17. The Christoffel symbol Γ is defined by

∇α∂β = Γγαβ∂γ.

We have the Kozsul formula

Γγαβ =
gγδ

2
(∂αgβδ + ∂βgδα − ∂δgαβ).

22.4 Causality

Let (M, g) be a Lorentzian spacetime as above. Recall that we have a causal structure on
the tangent bundle of M , which gives rise to a pair of light cones in each tangent space.
Taking the exponential map, we get a causal structure on curves in M .

Definition 22.18. The spacetime (M, g) is time-orientable if there is a continuous choice
of light cone for each tangent space.

Let us fix a time-orientation. The vectors in the chosen lightcone point to the “future.”

Definition 22.19. Let S ⊆ M . The chronological future I+(S) is the set of points in M
that can be reached by a curve through the exponential map of the open future light cones
of S. The chronological past is defined similarly, but with the open past light cone. The
causal future and causal past are defined similarly, but for the closed light cones.
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Chapter 23

The Cauchy problem in general
relativity

We pose the Einstein equation as an initial-value problem on the Lorenztian manifold (M, g).

23.1 The Einstein equation

If L is a Lagrangian density, then L does not have to be integrable, so long as we only take
only compactly supported perturbations when we carry out the calculus of variations. That
is why we emphasize that L is only a “density” rather than a summable quantity.

Throughout, we let δgαβ be a compcatly supported perturbation of the metric tensor gαβ.

Definition 23.1. Let L be a Lagrangian density. The energy-momentum tensor associated
to L is the tensor Tαβ given by∫

dL
ds

(·, g + sδg) dV (g + sδg) +

∫
TαβδgαβdV = 0.

Theorem 23.2 (Noether). If Tαβ is an energy-momentum tensor, then the divergence

∇αTαβ = 0.

Noether’s theorem can be interpreted as a generalization of the conservation laws of
energy, mass (which is just a form of energy by Einstein’s special theory of relativity),
and momentum. It is a special case of Noether’s theorem that for any Lie action of R
on a Lagrangian density, there is an associated conserved quantity in the respective Euler-
Lagrange equations.

A key point in general relativity is that “curvature is energy-momentum”, yet the energy-
momentum tensor Tαβ is divergence-free. So the curvature tensor appearing in general
relativity should be a divergence-free covariant 2-tensor. Thus we must define a 2-tensor
which measures curvature.

Definition 23.3. Let Rα
βγδ be the Riemann curvature tensor of (M, g). The Ricci curvature

tensor of (M, g) is given by
Ricαβ = Rµ

αµβ.

The scalar curvature is given by R = Ricαα.
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Definition 23.4. The Einstein tensor of (M, g) is

Gαβ = Ricαβ −
1

2
gαβR.

The Einstein equation is the equation

Gαβ =
8πG

c4
Tαβ.

We will normalize c = 1, and then take G = 1/(4π), so the Einstein equation will read
as Gαβ = 2Tαβ. Notice the similarity to the Gauss-Poisson equation for gravity

4πG∇αgα = ρ

where ρ is the mass density of the universe and gα is the gravitational field. We have

∇αGαβ = 0

by the second Bianchi identity.
We interpret Tαβ = 0 as meaning that the universe is a vacuum. In this case we have

Ricαβ = 0. Now Ricαβ = 0 is a geometric PDE, but we want to frame it as an initial-value
problem where the initial data consists of a 3-manifold, and the resulting 4-manifold comes
from gluing together the 3-manifolds together in time.

This interpretation gives another derivation of the Einstein equation. Assume Tαβ = 0;
then the universe should have no curvature.

Definition 23.5. The Einstein-Hilbert Lagrangian density is LEH = R dV .

The Einstein equation should be the Euler-Lagrange equation minimizing the Einstein-
Hilbert action.

Theorem 23.6. The Euler-Lagrange equation corresponding to the Einstein-Hilbert La-
grangian density is the Einstein equation.

Proof. Let δg be a compactly supported perturbation of hte metric tensor as above. Then

δ

δs
(g + sδg)µν = −δgµν .

Similarly
δ

δg
dV (g) = δgαβ dV (g).

In coordinates, we have

Ricβν = ∂αΓαβν − ∂βΓααν + ΓµαγΓ
γ
µν + ΓαβγΓ

γ
αν .

After a tedious computation in normal coordinates (where g = m and Γ = 0 at the origin)
we have

δ

δs
Ricαβ(g + sδg)| = 1

2
gµν(∂αδgβν + ∂βδgνα − ∂νδgαβ).

Applying the Lebiniz rule we have∫
M

δ

δs
LEH(g + sδg) =

1

2

∫
M

gαβRδgαβ − Ricαβ δgαβ dV

so the claim follows by lowering indices.
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23.2 Initial-data sets

Henceforth we fix a time-orientation of (M, g).

Definition 23.7. A time function is a smooth function t on M such that for every future-
pointing timelike vector field Xα, gαβ∇αtXβ > 0.

We fix a time function as well.

Definition 23.8. The initial-time slice Σ0 is the level set of the equation t = 0.

Because the metric signature is (−,+,+,+), the initial-time slice will be a 3-manifold.
We denote its induced Riemannian metric by g and induced Levi-Civita connection by ∇.

Definition 23.9. Let Σ be a Riemannian submanifold of codimension 1. Let n denote the
future-pointing unit normal vector to Σ. Then the second fundamental form kαβ is given by

kαβu
αvβ = −gαβuα · ∇vn

β.

The second fundamental form measures how fast the unit normal vectors change as we
move along unit tangent vectors; it is a measure of the extrinsic curvature of Σ in M .

Theorem 23.10 (Gauss-Codazzi). One has R(g)ijk`+kijkj`−ki`kjk = R(g)ijk` and ∇ikj`−
∇jki` = CR(g)ik`0.

Thus, if (Σ, g, k) is to be an initial-data set, it had better satisfy the Gauss-Codazzi
equations for the 4-manifold we want to embed it into.

Definition 23.11. Let Tαβ be a symmetric, divergence-free 2-tensor. An initial-data set
(Σ, g, k) corresponding to the energy-momentum tensor Tαβ is the data of:

1. A 3-manifold Σ,

2. a Riemannian metric g on Σ with Riemann curvature tensor R,

3. and a symmetric 2-tensor k on Σ,

satisfying the Gauss-Codazzi constraints

R + (tr k)2 + k
ij
kij = 4ϕ2Ttt

∇ikij −∇j tr k = 2ϕTjt

where

ϕ =
kij

2∂tgij
.

Definition 23.12. Let (Σ, g, k) be an initial-data set corresponding to the energy-momentum
tensor Tαβ. A development of (Σ, g, k) is an isometric embedding ι : Σ → M , where
M = (M, g) is a Lorentzian (1 + 3)-manifold solving the Einstein equation

Ricαβ −
1

2
gαβR = Tαβ

and k is the second fundamental form of ι.
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We think of the initial-data set as being the initial conditions of the Einstein equation
and (M, g) as being the solution.

Definition 23.13. Let S ⊆M be a spacelike hypersurface. Then S is a Cauchy hypersurface
if every maximal causal curve in M intersects S at exactly one point. Moreover, the domain
of dependence is the maximal submanifold D ⊆M such that S is a Cauchy hypersurface of
D.

For example, the initial-time slice Σ0 of Minkowski spacetime is a Cauchy hypersurface.
In fact, if B is a ball in Σ0, then the future-pointing causal cone based at B is the domain
of dependence of B.

Definition 23.14. Let (Σ, g, k) be a respective initial-data set. Let (M, g) be a Lorentzian
(1 + 3)-manifold. A globally hyperbolic development ι : Σ→M is a development of (Σ, g, k)
such that ι(Σ) is a Cauchy hypersurface of (M, g).

23.3 Well-posedness for the vacuum equation

Throughout this section we work with the Einstein vacuum equation Ricαβ = 0.
First, we recall the theorem that quasilinear wave equations are well-posed.

Theorem 23.15. Fix a Lorentzian metric g and consider the PDE

gµν(x, ϕ(x))∂µ∂νϕ(x) = N(x, ϕ(x), ∂ϕ(x))

(ϕ, ∂tϕ)(x) = (ϕ0, ϕ1)(x)

where ϕ is an unknown. Let s > d/2 + 1. If (ϕ0, ϕ1) ∈ Hs × Hs−1(Σ0), then there is an
maximal eclipse time T > 0 and a unique solution ϕ ∈ Hs([0, T ]× Σ0).

For Tαβ a tensor, we write

T̂αβ = Tαβ −
1

2
gαβg

αβTαβ.

Theorem 23.16 (Choquet-Bruhat-Geroch). Let (Σ, g, k) be a smooth initial-data set with
Ricαβ = 0. Then there is a unique maximal globally hyperbolic development (M, g, ι) of
(Σ, g, k); i.e. a globally hyperbolic development such that for any globally hyperbolic devel-
opment (M̂, ĝ, ι̂), there is an isometric embedding Φ : M̂ →M such that the diagram

M̂ M

Σ

Φ

ι̂

ι

commutes.

By lower-order terms we mean those of first or zeroth order (those which may serve as
quasilinear perturbations of the d’Alembertian, which is a second-order linear operator). The
idea of the proof is to write Ricαβ as a quasilinear wave equation and use local well-posedness
to construct local solutions, then glue all the local solutions together using Zorn’s lemma.
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Proof. We have

Ricαβ = ∂µΓµαβ − ∂αΓµµβ

=
1

2
gµν∂µ∂νgαβ −

1

2
gµν∂α∂βgµν +

1

2
gµν∂α∂νgβν +

1

2
gµν∂β∂µgαν

=
1

2
∂ν∂νgαβ + ∂αΓβ + ∂βΓα

where

Γβ =
1

2
gµν∂µgβν −

1

2
∂βgµν =

1

2
gµνΓαµνgαβ.

Let
Sαβ = Ricαβ −∂αΓβ − ∂βΓα.

Then the equation Sαβ = 0 is a quasilinear wave equation, so is locally well-posed, and has
a solution on a submanifold M of R× Σ.

Recall that R̂icαβ is the Einstein tensor and hence

∇αR̂icαβ = 0.

Taking the hat and divergence of both sides of the definition of Sαβ, we have

∇α( ̂∇αΓβ +∇βΓα) = 0.

But
̂∇αΓβ +∇βΓα = ∇αΓβ +∇βΓα − gαβgµν∇µΓν

so
0 = ∇α∇α − Γβ +∇α∇βΓα − gµν∇β∇µΓν = ∇α∇αΓβ.

Therefore Γ solves the wave equation. Since the wave equation is well-posed, it suffices to
show therefore that Γ|Σ = 0 and ∂tΓ|Σ = 0. For i, j spatial coordinates, we set gij|Σ = 0
and gtt|Σ = −1, gti|Σ = 0, ∂tgij|Σ|Σ = 2kij, and ∂tgtα|Σ = 0. Then Γ|Σ = ∂tΓ|Σ = 0 by the
Gauss-Codazzi equations. Thus with these initial conditions, Sαβ = Ricαβ so the Einstein
equation reduces to the quasilinear wave equation Sαβ = 0, and the solution manifold M
solves the vacuum Einstein equation, which is therefore locally well-posed.

Now let M be the class of globally hyperbolic developments of (Σ, g, k), ordered by
isometric embeddings which commute with the inclusions ι. This class is proper, but taking
a quotient by isometry, we arrive at a poset. Taking injective limits, we show that every
chain has an upper bound, so M has a maximal element ι : Σ → M , the set-theoretic
maximal globally hyperbolic development . It remains to show that ι is maximal in the sense
of the definition of maximal globally hyperbolic development (and hence unique).

Let ι̂ : Σ→ M̂ be a set-theoretically maximal globally hyperbolic development. We must
construct a isometric embedding Φ : M̂ → M making the diagram commute. By a partial
isometric embedding of M̂ into M we mean a isometric embedding Û →M for some open set
Û ⊆ M̂ . By local well-posedness, every point is contained in a neighborhood which admits
a partial isometric embedding that makes the diagram commute, and by local uniqueness,
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they satisfy the cohomological conditions in the definition of a sheaf. Therefore there is a
global partial isometric embedding, which is of course Φ.

We define the development-theoretic union M ∪ M̂ = M
∐
M̂/Φ, where the coproduct∐

is the sense of disjoint union. All conditions in the definition of a globally hyperbolic
development are easily checked for M ∪ M̂ except that M ∪ M̂ is Hausdorff.

Assume that M ∪ M̂ is not Hausdorff at a point x ∈M ∪ M̂ . Then x ∈ ∂(M ∪ M̂), and
by a difficult computation in Lorentzian geometry, there is a spacelike hypersurface S which
touches ∂M exactly at x. Away from x, S and Ψ(S) determine the same initial-data set.
But by continuity, S and Ψ(S) determine the same initial-data set at x as well.

But x lifts to a regular point in M
∐
M̂ (and let us assume without loss of generality that

x then lifts to a regular point in M), so there is a globally hyperbolic development extending
from a S-neighborhood of x by local well-posedness. Since M is set-theoretically maximal,
x does not lift to a point of ∂M . Therefore x /∈ ∂(M ∪ M̂), a contradiction.

It follows that M ∪ M̂ is Hausdorff, and hence a globally hyperbolic development which
contains M . So M ∪ M̂ = M , and it follows that M̂ = M . So M is a globally hyperbolic
development.
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Chapter 24

General relativity in spherical
symmetry

We now make a simplifying assumption to get rid of annoying obstructions in Lorentzian
geometry: that of spherical symmetry.

Definition 24.1. A spacetime (M, g) is spherically symmetric if there is a SO(3)-action on
M by g-isometries such that every SO(3)-orbit is a manifold of dimension at most 2.

Then the only possible orbits are fixed points and spheres of positive radius. For p ∈M
we let Sp denote the orbit of p, and let r(p) denote the radius of Sp, which can be intrinsically
defined by

r(p) =

√
µ(Sp)

4π
,

µ denoting area. Then zeroes of r are fixed points of SO(3).
When r(p) > 0, the induced metric on Sp is given by

g|Sp = r2g

where g is the Riemannian metric of the unit 2-sphere S2.
We let Q = M/SO(3), so Q is a Lorentzian (1 + 1)-manifold with boundary Γ = ∂Q.

Then
g = gQ + r2g.

24.1 Double-null pairs

Definition 24.2. A double-null pair on M is a pair of SO(3)-invariant smooth functions
u, v : M → R, increasing in time, such that

gαβduαduβ = gαβdvαdvβ = 0

and such that du, dv are linearly independent on every cotangent space. If we view u, v as
coordinates on M and let θ, ϕ be the usual polar coordinates on S2, the tuple (u, v, θ, ϕ) is
known as a system of double-null pair coordinates .
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Assuming that M has double-null pair coordinates,

g = dθ2 + sin2 θ dϕ2

and
gQ = −Ω2du · dv

for some function Ω.

Definition 24.3. The function Ω determined by double-null pair coordinates is called the
null lapse of the double-pull pair.

Let us assume that every spacetime admits a double-null pair coordinate system.
We have guu = gvv = 0 and

guv = −1

2
Ω2.

In particular we have

g =


2−1Ω2

2−1Ω2

r2

r2


so 2
√
− det g = We will always write the angular coordinates with capital letters.

By reparametrizing u, v to have bounded range, we can embed Q into a compact subset
of the Minkowski spacetime R1+1.

Theorem 24.4. Let (u, v, θ, ϕ) be a double-null coordinate system with null lapse Ω and
let φ be a spherically symmetric scalar field. Then

�gφ = −4Ω−2(∂u∂vφ+ r−1∂ur∂vφ+ r−1∂vr∂uφ).

Besides this, we can write the Einstein tensor Gαβ as

Guu = Ricuu = −2r−1Ω2∂u(Ω
−2∂ur)

Gvv = Ricvv = −2r−1Ω2∂v(Ω
−2∂vr)

Guv = Ricuv−
1

2
guvR = 2r−1∂u∂vr + 2r−2∂ur∂vr + Ω2r−2

GAB = RicAB −
1

2
gAB = −4r2Omega2g

AB
(Ω−1∂u∂vΩ− Ω−2∂uΩ∂vΩ + r−1∂u∂vr)

and all other entries determined by symmetry or vanishing.

From this, it is easy to see that the Einstein vacuum equation in spherical symmetry can
be expressed as

∂u(Ω
−2∂ur) = 0

∂v(Ω
−2∂vr) = 0

∂u∂vr + 2r−1∂ur∂vr + (2r)1Ω = 0

∂u∂vΩ− Ω∂uΩ∂vΩ− Ωr−2(2∂ur∂br + 2−1Ω2) = 0.

The wave operator in spherical symmetry has principal part ∂u∂v. So we view the first two
Einstein equations as constraint equations (called Raychaudhuri equations) and the last two
Einstein equations as quasilinear wave equations.

237



24.2 Local rigidity

We show that the Raychaudhuri equations form a strong constraint on the sort of solutions
we are allowed to study.

Lemma 24.5. Consider the quasilinear wave equation

∂u∂vΦ = N(φ, ∂Φ)

where N is C1. If Φ is a C1 solution to the equation with Φ prescribed on the future-pointing
lightcone centered at a point p ∈M , then Φ is unique.

Since this is a wave equation, we expect to need ∂Φ as initial data as well in order for Φ
to be unique. But the lightcone consists exactly of characteristic curves of Φ, one of which
determines ∂uΦ and the other determines ∂vΦ – and they must be compatible since p touches
both curves.

Proof. Notice that
∂u∂vΨ(∂u + ∂v)Ψ = .5∂v(∂uΨ)2 + .5∂u(∂vΨ)2.

Assume that Φ,Φ′ are solutions and let Ψ = Φ− Φ′. Then

∂u∂vΨ = Ψ∂ΦN(Φ, ∂Φ) +O(Ψ, ∂Ψ).

Integrate along a future-pointing “diamond” whose first vertex is p = (0, 0) and whose sides
are given by (or are perpendicular to – we call these Cu and Cv) the characteristic curves
C0, C0). This gives

1

2

(∫
Cu

(∂vΨ)2 +

∫
Cv

(∂uΨ)2 −
∫
C0

(∂vΨ)2 −
∫
C0

(∂uΨ)2

)
≤ C

∫
D

|Ψ||∂Ψ|+ C

∫
D

|∂Ψ|2.

The integrals along C0 and C0 are 0 because Φ = Φ′ there by assumption. So we have∫
Cu

(∂vΨ)2 +

∫
Cv

(∂uΨ)2 ≤ C

∫
D

|Ψ||∂Ψ|+
∫
D

|∂Ψ|2.

We use Gronwall’s inequality to control the right-hand side. Now

Ψ(u, v) =

∫ v

0

∂vΨ(u, ·)

which then vanishes. So this energy estimate gives Ψ = 0.

Theorem 24.6 (Birkhoff). Up to gauge symmetry, the solution to the Einstein vacuum
equation in spherical symmetry near a point p ∈ M is determined by r(p), the signs σν , σλ
of ∂ur(p) and ∂vr(p), and gµν∂µ∂νr(p).
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Proof. If u, v are a future-pointing double-null pair, and we transform them to (ũ, ṽ) where
ũ > 0 only depends on u and similarly for ṽ, then (ũ, ṽ) are a future-pointing double-null
pair. This transformation results in the transformation of Ω by

−Ω2 du dv = −Ω̃2 dũ dṽ = −Ω̃2ũ′ṽ′ du dv

so Ω̃2ũ′ṽ′ = Ω2. Let cp, cp be the curves of the future-pointing lightcone along u, v from p.

Then we can choose ũ, ṽ so that Ω̃ = 1 on cp, cp. Let us henceforth work in the coordinates

ũ, ṽ (so Ω = Ω̃).
By the lemma, we only need to determine Ω and r along cp, cp, and this will uniquely

determine the solution inside any diamond with two sides that lie along cp, cp; then make
the diamond as big as we need.

Assume σν = σλ = 0. Applying the Raychaudhuri equations along cp, cp, we have ∂u∂ur =
0 on cp, so by the initial conditions we have ∂ur = 0 on cp. Similarly ∂vr = 0 on cp. Thus
r = r(p).

If σν 6= 0, σλ 6= 0, then we again have ∂u∂ur = 0 along cp. The only remaining degree
of freedom is our freedom to choose gµν∂µ∂νr(p), which ends up determining ∂ur. Therefore
we know the value of r along cp, cp.

Finally assume σν 6= 0 but σλ = 0. The proof is similar to the previous cases.
We have proven uniqueness in the future-pointing lightcone of p. By time-reversal sym-

metry we obtain uniqueness in the past-pointing lightcone. By spherical symmetry, we can
switch u and v with −u and −v and run the same argument for the “left-pointing lightcone”
and the “right-pointing lightcone” which is all four cones that are around p.

The point is that r, σν , σλ, and µ0 = gµν∂µr∂νr(p) are geometric data, and don’t de-
pend on the choice of coordinates; but everything that isn’t determined by these terms is
determined by our choice of coordinates. Actually, µ0 is only needed when σν and σλ are
nonzero.

Definition 24.7. The Hawking mass is a function m on spherically symmetric spacetime
defined by

gµν∂µr∂νr = 1− 2mr−1.

Note that m does not depend on a choice of coordinates since neither does r.

Lemma 24.8. The Hawking mass is constant on connected components.

Proof. We have
−4∂ur∂vrΩ

−2 = gµν∂µr∂νr

so by implicit differentation we have

−2r−1∂um+ 2∂urr
−2m = −4∂urΩ

−2∂u∂vr.

Doing a bunch of algebra we see ∂um = ∂vm = 0.

When m = 0 we will end up with Minkowski spacetime. If m > 0 one can show that the
null lapse is given by

Ω2 = −σνσλ(1− 2mr−1).

This gives a certain metric that we call the Schwarzschild metric.
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Definition 24.9. The Schwarzschild metric is the metric

g = −σνσλ(1− 2mr−1) dudv + r2g.

One can construct a maximal Schwarzschild spacetime. In fact if we define µ by 1− µ =
gαβ∂α∂βr, then rµ is constant, and in fact we take rµ = 2m. Doing some algebra and using
the Raychaudhuri equations, we have Ω2 = |1− 2mr−1|. If r → r0 as v →∞, then ∂vr → 0,
i.e. r0 = 2m.

We now rephrase Birkhoff’s theorem.

Corollary 24.10. If (M, g) is a spherically symmetric solution to the Einstein vacuum
equation then (M, g) is locally isometric to an open subset of a Schwarzschild spacetime.

We think of Schwarzschild spacetime as an easy example of a black hole spacetime, for
m > 0. Choosing our signs correctly, we have

g = −(1− 2mr−1) dudv + r2g = −dudv + r2g + o(1)

so that g approximates Minkowski spacetime for r large enough (or m small enough; if
m = 0 it is Minkowski spacetime, with the singularity r = 0 artifically added by the choice
of coordinates). That is, g is asymptotically flat, so models a gravitational system (where the
mass is concentrated in a compact set – say, all the mass is inside some star.) In particular,
if the observer is not massless, then the observer is at r =∞. Drawing the Penrose diagram,
our causal past, looking in from r = ∞, is r > 2m. Thus no matter how far in the future
we are, we lie in the causal complement of the region r < 2m.

Definition 24.11. The boundary r = 2m of a black hole is called the event horizon. The
region r < 2m is called a black hole.

In fact we have RµναβR
µναβ ≥ Cm2r−6, so the spacetime has infinite curvature at 0.

But assume m < 0. Then r = 0 is a “naked singularity”, which lies in our causal past.
A major conjecture, the weak cosmic censorship conjecture, is that for any physically mean-
ingful spacetime, naked singularities do not exist. Note that the Schwarzschild spacetime
with m < 0 is not a counterexample, because such a spacetime somehow has negative mass,
which is absurd.

24.3 Einstein-Maxwell equations

Let Fµν be a real-valued 2-form on M , the electromagnetic field . If (M, g) is Minkowski
spacetime, we can take Ei = F0i and Bi = εijkF

jk/2, the Hodge dual of E, to recover the
electric and magnetic fields.

Definition 24.12. The Maxwell equations are the system ∇µFνµ = 0, dF = 0.

Let us assume that F is spherically symmetric; i.e. if R ∈ SO(3) then R∗Fµµ = Fµν ,
where we think of SO(3) as the symmetry group of (M, g). We will write

F = Fuv du ∧ dv + Fθϕ dθ ∧ dϕ.
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One can use algebraic topology to prove that that Fuv is completely determined by u, v and
Fθϕ is completely determined by a function of u, v as well as sin θ. Since dF = 0, ∂uFθϕ = 0,
and ∂vFθϕ = 0. So actually Fθϕ = m sin θ dθ ∧ dϕ for some constant m. Also,

0 = ∇µFuµ = −2Ω−2∂u(r
2Ω−2Fuv)

and similarly for v. Thus ∂u(r
2Ω−2Fuv) = 0 and similarly for v. Thus Fuv = eΩ2r−2 for some

constant e.

Theorem 24.13 (Weyl?). Every spherically symmetric solution F of the Maxwell equation
is given by

F = eΩ2r−2 du ∧ dv + b sin θ dθ ∧ dϕ.

Thus an electromagnetic field is completely determined by the pair (e,m). In Minkowski
spacetime, eΩ2r−2 du ∧ dv = er−2 dt ∧ dr which is the electric field given by a point charge
at the origin, while b sin θ dθ ∧ dϕ is the magnetic flux through a sphere.

We now derive the Einstein-Maxwell system from the principle of least action. The
Lagrangian density of the Einstein vacuum equation was R dV while the Lagrangian density
of the Maxwell equation is −FαβFαβ/2. Thus we have

Ricαβ −
1

2
gαβR = 2Tαβ

Tαβ = FαµF
µ
β −

1

4
gαβFµνF

µν

∇αFαβ = dF = 0.

As usual, Tαβ is the energy-momentum tensor of the Maxwell equation. We now compute
Tαβ by

Tuu = Tvv = 0

Tuv = 4−1Ω2r−4(b2 − e2)

since
FµνF

µν = 2(guv)2(Fuv)
2 + gAA

′
gBB

′
FABFA′B′ = 2r−4(e2 + b2).

Moreover, TAB is proportional to Tuv. Thus, the Einstein-Maxwell equations in spherical
symmetry, obtained by plugging into the Raychaudhuri and Einstein spherically symmetric
equations, is

0 = −2r−1Ω2∂u(Ω
−2∂ur)

0 = −2r−1Ω2∂v(Ω
−2∂vr)

0 = 2r−1∂u∂vr + 2r−2∂ur∂vr + Ω22−1r−2 − 2−1Ω2r−4(e2 + b2).

Theorem 24.14. Let (M, g, F ) be a spherically symmetric solution to the Einstein-Maxwell
system. Then for any p ∈M , the solution is determined in an open neighborhood O of p by
r, µ, σν , σλ, e = 2r2Ω−2Fuv, and b = csc θFθϕ.
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Proof. The electromagnetic field is rigid since we are in spherical symmetry. Now run the
proof of Einstein vacuum equation rigidity (using the Raychaudhuri equations, which are
the same as before) but with Tαβ given by (e, b).

Lemma 24.15. d(1− µ) ∧ dr = 0.

Proof. Same as in the vacuum case, because Ricuu = Ricvv = 0.

As a result, there are constants C such that 1−µ = 1− 2Cr−1 + 2C(e2 + b2)r−2. In fact,
1− µ = gαβ∂ur∂vr = −4∂ur∂vrΩ

−2 so we have

d(1− µ) = −4d(∂ur∂vrΩ
−2) = −4∂u∂vrΩ

−2(∂ur du+ ∂vr dv).

Therefore
d(1− µ) = −4Ω−2∂u∂vr dr.

Using the Einstein-Maxwell equations we see that if f(r) = −r−1(1−µ) + r−1− (e2 + b2)r−3

then d(1−µ) = f(r) dr. In addition, if h = 1−µ then h′ = f so d(rh)/dr = 1− (e2 + b2)r−2

whence rh = C + r + (e2 + b2)r−1. This proves the above claim.
We now search for a global solution to the Einstein-Maxwell equation. We do this in

Eddington-Finkelstein coordinates, which just means that ∂urΩ
−2 is constant in one dimen-

sion and ∂vrΩ
−2 is constant in the other dimension. This is possible because of the Raychaud-

huri equations. In these coordinates, Ω2 = |1−2Cr−1 +(e2 +b2)r−2| and g = −Ω2du dv+r2g.
We look at the sign of the discriminant C2−Q2 where Q2 = e2 + b2. If 0 < |Q| < C then

there are two solutions to the equation 1−2CR−1 +Q2r−2 = 0, namely r± = C±
√
C2 −Q2.

This is called the subextremal case.
By the Raychaudhuri equations the signs of ∂ur and ∂vr cannot change along the u and

v directions respectively. So we can fix a sign for each and see what happens.
First take the case ∂ur < 0, ∂vr > 0. Assume that r → r+ as u → ∞, v → −∞; then

r → ∞ as u → −∞, v → ∞. Thus along every null curve, r tends to r+ in one direction
and ∞ in the other direction. On the other hand, if we take “initial data” r = r−, then we
hit r = 0 for some finite u, which is a singularity.

If ∂ur < 0, ∂vr < 0, then as u → −∞, v → −∞, r → r+. Similarly as u → ∞, v → ∞,
r → r−.

Gluing together the above Penrose diagrams we construct all possible solutions to the
Einstein-Maxwell equations in spherical symmetry. We have to make sure that Ω is con-
tinuous along the gluings, which can be guaranteed by a clever change of coordinates. The
maximal such simply connected solution is called the maximal Reissner-Nordstrom space-
time. It is not compact.

In the superextremal case Q2 > C2 we recover the negative-mass Schwarzschild solution.
Finally we consider the extremal case Q2 = C2. The resulting maximal solution is the

Bertotti-Robinson spacetime. One can show that

∂u∂v log Ω = 2r−2∂u∂vr + ((2r2)−1 − e2r−4)Ω2

using the equation for the angular Einstein tensor RicAB −gABR/2 and the angular energy-
momentum TAB = Q2. One then shows that ∂u∂v log Ω = KΩ2 for some K = (2r2

0)−1−e2r−4
0 .

This is a constant-curvature spacetime.
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Theorem 24.16 (Birkhoff for Einstein-Maxwell). If (M, g, F ) is a spherically symmetric
solution to the Einstein-Maxwell equation, then each point of M is contained in an open set
which is isometric to an open set of either the maximal Reissner-Nordstrom spacetime, the
Bertotti-Robinson spacetime, a Schwarzschild spacetime, or the Minkowski spacetime.
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Chapter 25

Cosmic censorship

In GR, we are interested in two regimes: isolated gravitational systems (asymptotically flat
spacetimes; there is a singularity at one point and everything else is a vacuum, so we are
studying the dynamical structure) and cosmological systems (where we are modeling the
entire universe, and we want to study the topological structure). For now, we will study the
isolated case, and view it as a Cauchy problem.

Notice that the Cauchy problem behaves quite strange in the negative Schwarzschild
spacetime (M, g). Suppose we have an initial-data set Σ for M ; then, a geodesic in Σ along
which r → 0 cannot be extended to the future. Drawing the Penrose diagram we see that the
negative Schwarzschild spacetime is “not deterministic,” i.e. Σ does not uniquely determine
the future because we cannot extend it into the future-pointing lightcone of the black hole.

At least in a positive Schwarzschild spacetime, these “incomplete geodesics” are inside
the black hole region. Therefore the observer at infinity cannot see the singularity, where we
cannot extend an initial data set to the future. But in the negative Schwarzschild spacetime,
the observer sees the singularity. But negative Schwarzschild spacetimes have negative mass
by definition, which makes no sense physically.

We thus state the weak cosmic censorship conjecture: an observer at infinity cannot see
a singularity in a “typical” physically meaningful spacetime.

We call the future boundary of a Penrose diagram (limiting points of radial null geodesics
along which r →∞) the null infinity of the spacetime. A spacetime has complete null infinity
if the lengths of geodesics parallel to null infinity tend to ∞ as r → ∞. In the negative
Schwarzschild spacetime, the null infinity was incomplete because the null infinity was the
limit of the causal future of the initial-data set, which was compact.

We will be deliberately vague about what we mean by a reasonable Einstein-matter sys-
tem, but it will be the Einstein equation coupled to physically meaningful Lagrangian densi-
ties (i.e. the Maxwell density, the vacuum density, etc.) Similarly for physically-meaningful
initial-data set but in particular the initial-data set should be a geodesically complete mani-
fold . (This means that you can “follow a geodesic forever”; or in other words the domain of
the exponential map TΣ→ Σ is defined on all of TΣ.) This rules out the punctured line and
manifolds with boundary, because those have singularities we can run into in finite distance,
which does not seem physically reasonable.

By generic we mean in the sense of the Baire category theorem. In fact, Christodoulou has
proven that a naked singularity is unstable, and under a slight perturbation of g necessarily
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collapses into a black hole, and so is hidden from the observer at infinity, as in the positive
Schwarzschild spacetime.

Conjecture 25.1 (weak cosmic censorship). Given a generic physically-meaningful initial-
data set to a reasonable Einstein-matter system in an asympotically flat universe, the future
maximal globally hyperbolic development has complete null infinity.

Recall that by definition, the maximal globally hyperbolic development ends at the space-
like hypersurface wherein the development fails to be unique. This region is called a Cauchy
horizon. In a Reissner-Nordstrom black hole, there is a Cauchy horizon, so that a test
particle falling into a black hole is NOT unique.

Conjecture 25.2 (strong cosmic censorship). Given a generic physically-meaningful initial-
data set to a reasonable Einstein-matter system in an asymptotically flat universe, the future
maximal globally hyperbolic development is inextendible as a smooth Lorentzian manifold.

25.1 Einstein-Maxwell-charged scalar field equations

The most complicated model of the cosmic censorship conjectures is the Einstein-Maxwell-
charged scalar field equation. A scalar field φ is a section of a complex line bundle E whose
structure group is the orthogonal group O(1). This gives rise to a connection D on E and

Fαβ = [Dα, Dβ].

Locally, we have Dα = ∂α + iAα. The action is given by

ρ(φ,D, g) =

∫
R dV (g)−

∫
FαβFαβ dVg − 2

∫
〈Dαφ,Dαφ〉 dVg

where 〈φ, ψ〉 = Re(φψ) is the natural real-valued inner product on a complex line bundle.
In case φ = 0, the Einstein-Maxwell-charged scalar field reduces to the Einstein-Maxwell

system, but it is dynamical because it solves the wave equation with connection D, namely

DαD
αφ = 0.

However, the Einstein-Maxwell-charged scalar field is too hard to study directly, so we restrict
to subsystems thereof.

Example 25.3. The Einstein-scalar field equation or Christodoulou model is the Einstein-
Maxwell-charged scalar field with trivial Maxwell tensor, Fαβ = 0. Then D = ∂, so we do
not need to worry about the curvature of the line bundle. That is, we can think of φ as a
mapping φ : M → R. It is the model that we will study when we consider the weak cosmic
censorship conjecture.

Example 25.4. The Einstein-Maxwell-uncharged scalar field equation or Daferemos model
is the system obtained by decoupling φ from F . In other words, φ : M → R (so the curvature
of the line bundle is trivial). It is the model where Reichner-Nordstrom spacetimes make
sense, so we study the strong cosmic censorship here.
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We now study the (relativistic) kinetic theory of the Einstein equation. Let M be a
spacetime, so T ∗M , the cotangent bundle, has a natural symplectic form, namely

ω = dxα ∧ dpα.

Here xα is a coordinate system on U ⊆ M and we view a covector as pα dxα. Given
H ∈ C∞(T ∗M) we define the Hamiltonian vector field by

(XH)α = ωαβ dHβ.

In case H = 2−1pαpα then XH is the vector field on the cotangent bundle whose flow restricts
to the Hamiltonian flow on M . We apply the Legrende transform (xα, pα) 7→ (xα, pα) we get
a flow on TM for which ẋα = pα, ṗα = −Γαβγp

βpγ. We let ΦH denote the induced flow of
XH .

Definition 25.5. A Vlasov field is a positive measure µ on T ∗M which is invariant under
the pullback by ΦH

t for every t; that is,

µ = (ΦH
t )∗µ.

In Newtonian mechanics, one assumes that the Vlasov field is absolutely continuous with
respect to the natural volume form ε induced by the symplectic form µ. Using the Radon-
Nikodym theorem, we find an f so that µ = fε. Since ΦH preserves ε we just need to check
that XHf = 0, the Vlasov equation.

Now T ∗M is foliated by level hypersurfaces of H, and XHH = 0, so ΦH preserves the
foliation of T ∗M . Now a null geodesic is one arising from the flow restricted to H = 0, and
timelike geodesics are those for which H = −1. To restrict to future-pointing geodesics we
assume p0 < 0. Thus we define P+

0 to be the (x, p) with H(x, p) = 0 and p0 < 0. Similarly for
P+

1 where we have H(x, p) = −1. These level hypersurfaces are 7-manifolds and we search
for a top form on them. Now

εP+
σ

= c dH ∧ ω ∧ ω ∧ ω

for some function c allowed to depend on σ{0,−1}. For µ = fεP+
σ

, XHf = 0 iff

pα∂αf = ∂αg
βγpβpγ∂αf = 0.

Of course if σ = 0 then we are thinking of our particle as a photo (no mass) so we say that
this is the “massless” case and σ = −1 is the “massive” case.

Definition 25.6. Let µ be a Vlasov field which is absolutely continuous with respect to
εP+

σ
. The associated energy-momentum tensor Tαβ of µ is given weakly by (with ϕ a test

function) ∫
M

Tαβ)xϕ(x) dV (g) =

∫
T ∗M

pαpβϕ(x) dµ.

The number density is ∫
M

Nα(x)ϕ(x) dV (g) =

∫
T ∗M

pαϕ(x) dµ.
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Since µ is absolutely continuous, it is supported on the 7-manifold which is a level hy-
persurface of H. If f is the Radon-Nikodym derivative, then

Tαβ(x) =

∫
T ∗M

pαpβf(− det g)−1/2εP+
σ
|T ∗xM

and

Nα(x) =

∫
T ∗M

pαf(− det g)−1/2εP+
σ
|T ∗xM .

To couple the Vlasov field to the Maxwell equation we take Nβ = ∇αFαβ and

2H = gαβ(pα + Aα)(pβ + Aβ).

Example 25.7. A subsystem of the Einstein-Vlasov system is the Einstein-null dust system.
It is too simple to be realistic but is useful to demonstrate computations. The interpretation
is that everything travels along radial null geodesics. So there is no mass, and the physical
system consists solely of radiation moving radially.

An null dust field which is outgoing is characterized by having energy-momentum tensor
Tαβ such that

T outuu ≥ 0

with other components zero. Similarly T invv ≤ 0 for incoming null dust fields. Now ∇αTαβ = 0
so ∂vT

out
uu = 0. (Similarly ∂uT

in
vv = 0.)

We will assume that there are two noninteracting null dusts, one incoming and one
outgoing. That is, the Einstein-null dust equation is given by

Ricαβ −
1

2
gαβR = 2(T inαβ + T outαβ ).

25.2 The structure of toy models

Two basic papers about the a priori characterizations of solutions to spherically symmetric
toy models are Daferemos “Spherically symmmetric spacetimes with a trapped surface” and
Komnemi “The global structure of a spherically symmetric charged scalar field spacetime”.
Let us give a shallow introduction to this theory.

We will let (M, g) be the 1+3-dimensional maximal globally hyperbolic development with
a spherically symmetric initial data set Σ0. Let (Q, gQ) be the quotient of (M, g) by SO(3).
We will assume that Σ0 is diffeomorphic to R3 or R× S2. (The latter is the initial-data set
of the spacetimes for which we will study the strong cosmic censorship conjecture.)

If Σ0 = R3, then by algebraic topology, there is a fixed point of SO(3). In other words,
the set Γ = {r = 0} has

Γ ∩ Σ0 = {p}.
On the other hand, if Σ0 = R× S2, then SO(3) cannot have any fixed points.

By global hyperbolicity, there is a future-pointing double null pair (u, v) on Q. The
existence of a double null pair implies that there is an embedding Q → R2, i.e. a Penrose
diagram. We will write Q for the closure of Q inside R2; i.e. if Q is not a closed manifold
then we will take it to be a manifold with boundary.
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Definition 25.8. Tαβ obeys the dominant energy condition if for every causal, future-
pointing vectors x, y,

Tαβx
αyβ ≥ 0.

In fact, Tαβγ̇
α = Jβ should be interpreted as the “energy-momentum” along γ. In fact,

the coordinate of Jβ along γ is the energy along γ. So the dominant energy condition says
that there is positive energy.

In spherical symmetry, the dominant energy condition is equivalent to Tuu ≥ 0, Tvv ≥ 0,
Tuv ≥ 0. It follows that Ricuu ≥ 0, Ricvv ≥ 0. Since

Ricuu = −2r−1Ω2∂u(Ω
−2∂ur)

it must be that the sign of ∂ur is preserved, and similarly for ∂vr. Thus r is monotone in u
and v separately.

Henceforth we assume the dominant energy condition. It therefore makes sense to also
assume the antitrapping condition:

Definition 25.9. Σ0 obeys the antitrapping condition if: if Σ0 = R3 then ∂ur < 0 on Σ0;
if Σ0 = R × S2 then ∂ur < 0 on some Σ′0 a connected subset of Σ which meets the ideal
endpoint of Σ0 on the right.

Let
Q′ = {(u, v) ∈ Q : ∃u0 (u0(v), v) ∈ Σ0}.

Then the antitrapping condition implies that ∂ur < 0.

Definition 25.10. Assume the antitrapping condition. (u, v) ∈ Q′ is trapped if ∂vr < 0.
(u, v) ∈ Q′ is regular if ∂ur > 0. (u, v) is marginally trapped if ∂vr = 0.

Because of these conventions, we say that u is incoming and v is outgoing.

In a black hole, every point is trapped. The event horizon is marginally trapped. For-
mally, if T is the set of trapped points, and (u, v′) lies in the future of (u, v), then (u, v) ∈ T
implies (u, v′) ∈ T .

Theorem 25.11 (Penrose singularity theorem). Suppose that T is nonempty. Then there
is an incomplete outgoing null geodesic.

Recall that a geodesic γ is complete if for every t such that γγ̇ γ̇(t) = 0 (t is an affine
paramter), γ(t) exists. This is not the case if γ runs into a boundary. That is, there is
an incomplete geodesic the exponential map TM → M fails to be defined far away from
the origin of each tangent space. Incomplete null geodesics can be interpreted physically as
meaning that a light wave fails to exist after traveling a finite distance.

Proof. Let (u0, v0) ∈ T be trapped, and let (u1, v1) be the endpoint of the outgoing null
geodesic from (u0, v0). This is finite because we embedded Q in R2. Now we compute∫ v1

v0

Ω2(u, v) dv

and use the Raychaudhuri equations and the trapping conditions to conclude that the integral
is the integral of a bounded function over a compact set. So it’s finite, hence an affine
parameter.
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Actually the Penrose singularity theorem holds in much greater generality. The existence
of trapped surfaces is an open condition on the moduli space of all initial-data sets, which
implies that there is a stable singularity, which necessarily follows from the existence of black
holes.

25.3 Penrose inequalities

We generalize the result that says that the mass of the universe is positive if there are no
black holes, to bound the mass of the universe in terms of the radius of the black hole. We
follow Daferemos’s paper “Spherically symmetric spacetimes with a trapped surface”.

Let (M, g) be a spherically symmetric solution to the Einstein equation, which is the
future maximally globally hyperbolic development of a spherically symmetric initial-data set
Σ0, where Σ0 is either homeomorphic to R3 to R × S2. Let Q = M/SO(3) be the Penrose
diagram of (M, g). We will assume the dominant energy condition on the energy-momentum
tensor T (i.e. Tuu ≥ 0, Tvv ≥ 0, Tuv ≥ 0). We also assume that there are no antitrapped
spheres (which for Σ0 = R3 means that ∂ur < 0 on Σ0.)

Let Q′ be the set of points in the Penrose diagram which are in the image of an incoming
null curve from Σ0. By the Raychaudhuri equations and the assumption on antitrapped
spheres, ∂ur < 0 on Q′.

Let A be the apparent horizon, i.e. those (u, v) for which ∂vr(u, v) = 0. Every event
horizon is contained in the apparent horizon.

Let U be the set of u such that supv r(u, v) =∞. Thinking of Q as a bounded subset of
R2 we let ζ+ be the set of (u, v) ∈ ∂U such that u ∈ U .

Definition 25.12. ζ+ is the future null infinity of Q.

Lemma 25.13. If ζ+ is nonempty, then it is a connected incoming null curve emanating
from the interior.

Proof. If (u, v) ∈ ζ+ then we can find a point on Σ0 whose lightcone includes (u, v).

Lemma 25.14. J−(ζ+) ⊆ R, the set of regular points.

So a particle cannot end up in the future null infinity if it is trapped or lies on an event
horizon.

Recall that the Hawking mass m at (u, v) is defined by

1− 2m

r
= −4

∂ur∂vr

Ω2
.

Lemma 25.15. One has ∂um = 2r2Ω−2(Tuv∂ur − Tuu∂vr) and similarly for v.

Proof. Use the Einstein equations in spherical symmetry and the dominant energy and no-
antitrapping conditions.

Corollary 25.16. Inside R ∪ A, ∂um ≤ 0 and ∂vm ≥ 0.

Lemma 25.17. Inside Q′, the sign of ∂vr is the sign of 1− 2mr−1.
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So in particular, a point is trapped provided that 1− 2mr−1.

Definition 25.18. Fix (u, v) ∈ J−1(ζ+). Define the Bondi mass

M(u) = lim
v→vζ+

m(u, v).

The ADM mass is
MADM = lim

u→Σ0

M(u).

So the Bondi mass is the mass observed by someone standing at the future end of a curve
for which u is constant. The ADM mass is the mass observed by an observer at ∂Σ0. Here
“feeling mass” means experiencing a gravitational field.

Theorem 25.19 (positive mass theorem). If Σ0 = R3 then MADM ≥ 0.

Proof. Either Σ0 ⊆ R or not. If not, then there is a point on Σ0 which does not end up at
ζ+, and in particular there is a point (u0, v0) on ∂R∩Σ0 which lies in the apparent horizon.
So at that point, 1 = 2mr−1. Since r > 0, m > 0, and the monotonicity properties above
guarantee that the regular points also have positive mass. The observer at infinity can only
feel things in his causal past, in particular Σ0 ∩R, so we’re done.

If Σ0 ⊆ R, note that since g is smooth, r is Lipschitz. So

1− 2mr−1 = g(∂r, ∂r)

is bounded, whence m → 0+ as r → 0 on Σ0. By monotonicity, m ≥ 0 on Σ0, and so
MADM ≥ 0.

Note that in the case Σ0 ⊆ R, we used the fact that Σ0 = R3 so show that g is smooth
and that Σ0 is connected. We used the dominant energy condition and the antitrapping to
guarantee monotonicity.

Corollary 25.20 (Riemannian Penrose inequality). Let SR be a minimal sphere in Σ0 of
radius R > 0, and assume that the second fundamental form is 0. Then

MADM ≥
R

2
.

In R3 there are no minimal spheres so we take R → 0. The positive mass theorem is
sharp, because the ADM mass of Minkowski spacetime is 0.

Definition 25.21. The generalized extension principle is the assumption that for every
p ∈ Q, q ∈ I−(p), q 6= p, if

D = J+(q) ∩ J−(p) \ p,

then D has finite volume and
0 < inf

D
r < sup

D
r <∞.

The generalized extension principle holds for any reasonable spacetime.
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Example 25.22. The generalized extension principle is not true for the Einstein null dust
spacetime.

Definition 25.23. The event horizon H+ is the future boundary of J−(ζ+).

Then one has
lim
v→ζ+

r = sup
H+

r.

Definition 25.24. The final Bondi mass is

Mf = lim
u→u�

M(u) = inf
u
M(u),

the limit taken as u goes to the future.

The fact that this is an infimum follows from the monoticity assumptions.

Theorem 25.25 (Penrose event horizon inequality). Assume the generalized extension prin-
ciple. Then

sup
H+

r ≤ 2Mf .

We think of the sup as the radius of the black hole. Unravelling the definitions, we obtain
a lower bound on all Bondi masses that follows from the size of the black hole.

The idea of the proof is that if we have control of 1−2mr−1, then we use the Raychaudhuri
equation

−4∂urΩ
−2 =

1− 2mr−1

∂vr

to control ∂vr in terms of ∂ur. We then use the definition of the Hawking mass to control the
integral of the energy-momentum tensor. So if the conclusion of the Penrose event horizon
inequality fails, we can find a (u, v) on the event horizon such that r > 2Mf . Since M and
r obey similar monoticity conditions, we obtain an absurd bound on the mass.

25.4 Recent progress on strong censorship

Conjecture 25.26. For a generic asymptotically flat initial data set for a “reasonable”
Einstein-matter Lagrangian, the future maximal globally hyperbolic development is inex-
tendible as a “suitably regular” Lorentzian manifold.

Example 25.27. The Reichner-Nordstrom spacetime is a (highly nongeneric) counterexam-
ple.

To prove the strong cosmic censorship conjecture one would need to show that the Cauchy
horizon of any counterexample must be unstable in the sense that a small perturbation of the
initial-data set would necessarily destroy the Cauchy horizon. To do this, we first characterize
its stability properties.
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Example 25.28. Let us study the stability properties of Cauchy horizons in the Einstein-
Maxwell null dust Lagrangian. Recall that null dust is defined by its energy momentum
tensor. That is, T outuu is nonzero and can depend on u and v but all other T outαβ = 0. This is
the outgoing null dust. By Noether’s theorem, ∇µT outµν = 0 which implies that Tuu does not
depend on v. We also have a term T outvv which can be nonzero and only depends on v.

The Einstein-Maxwell-null dust equation is Gαβ = 2Tαβ like usual, where where

Tαβ = T outαβ + T inαβ + TMax
αβ

where TMax is the Einstein-Maxwell energy-momentum tensor. But TMax
uu = TMax

vv = 0, so
the null dust coordinates do not interact with the Einstein-Maxwell coordinates.

First we treat the case T out|Σ0 = 0. Assume that T in|Σ0 is small and rapidly decaying.
We claim that this will deform into a large perturbation of the Cauchy horizon. In these
assumptions, the metric tensor is given by the Vaidya metric. In Eddington-Finkelstein coor-
dinates for v (i.e. v is normalized so Ω2(∂ur)

−1 = −2, which is possible by the Raychaudhuri
equations),

g = −Ω2 dudv + r2g = −Ω2((∂ur)
−1∂ur + (∂vr)

−1∂vr) dudv + r2g

= 2 drdv − 2∂vrdv
2 + r2g.

We introduce the modified Hawking mass $ defined by

gαβ∂αr∂βr = 1− 2$r−1 +$2r−2.

Then ∂u$ = −2r2∂vrΩ
−2Tuu and similarly for v. In Eddington-Finkelstein coordinates,

∂v$ = r2Tvv.

Thus we arrive at the Vaidya metric

g = 2 drdv − (1− 2$r−1 +Q2r−2 dv2 + r2g)

∂v$ = r2Tvv.

We now normalize so Tvv|Σ0(v) = εv−p for p, ε parameters. Then ∂v$ = εv−p. We assume
p > 1; then ∂v$ is L1 and $ stays finite up to the Cauchy horizon. Now we do not have
r → 0at the Cauchy horizon, so the Vaidya metric cannot blow up. But v → ∞ at the
Cauchy horizon, and Ric blows up at the Cauchy horizon. In double-null coordinates,

Ω2 = O(e−2Kv)

for some K, when u is held fixed. So if L = Ω2 ∂v, L “should be” a well-behaved vector field,
yet L experiences exponential growth as we approach the Cauchy horizon. Now Ric(L,L) =
2r−2v−pO(e4Kv) which blows up at the Cauchy horizon.

So Ric is highly unstable near the Cauchy horizon, even though the Vaidya metric itself
is stable. But a theorem of Poisson and Israel in the early 90’s shows that the blowup of
$ near the Cauchy horizon is generic, so the Einstein-Maxwell null dust system with no
outgoing radiation is highly unrealistic. In fact if T out is nonzero on Σ0 then $ =∞ on the
Cauchy horizon. This phenomenon is known as the mass inflation scenario.
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Example 25.29. We now treat the more realistic Einstein-Maxwell uncharged scalar field
system. Here we have introduced a scalar field φ on M which is governed by the wave
equation �gφ = 0. When we say it is uncharged we mean that we do not use the Maxwell
tensor to introduce curvature on the line bundle that φ maps M into (so we can take that
line bundle to just be R).

Theorem 25.30 (Kommemi). Assume that Σ0 is homeomorphic to R× S2, and is asymp-
totically flat on two ends. Then there are at most two Cauchy horizons, and there must be a
complete null infinity. If the spacetime is C2-extendible, then it must be extendible through
the Cauchy horizon in the sense that there must be a timeline geodesic γ in the extension
which meets the Cauchy horizon on the interior of γ.

Let us consider the initial-value problem inside the black hole region. We normalize v
so that −2∂vr = Ω−2 on the event horizon, and we assume that there is a p > 1/2 such
that φ = O(v−p) on the event horizon. If φ is smooth, then Daferemos proved that there
is a Cauchy horizon, and that g is continuous up to the Cauchy horizon. Moreover, if φ is
compactly supported on Σ0 then ∂vφ = O(v−4). This estimate on φ is known as the Price
law rate.
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